Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks

副作用(计算机科学) 药品 计算机科学 构造(python库) 随机森林 机器学习 网络模型 异构网络 人工智能 医学 药理学 电信 无线网络 程序设计语言 无线
作者
Xian Zhao,Lei Chen,Zi-Han Guo,Tao Liu
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:14 (8): 709-720 被引量:70
标识
DOI:10.2174/1574893614666190220114644
摘要

Background: The side effects of drugs are not only harmful to humans but also the major reasons for withdrawing approved drugs, bringing greater risks for pharmaceutical companies. However, detecting the side effects for a given drug via traditional experiments is time- consuming and expensive. In recent years, several computational methods have been proposed to predict the side effects of drugs. However, most of the methods cannot effectively integrate the heterogeneous properties of drugs. Methods: In this study, we adopted a network embedding method, Mashup, to extract essential and informative drug features from several drug heterogeneous networks, representing different properties of drugs. For side effects, a network was also built, from where side effect features were extracted. These features can capture essential information about drugs and side effects in a network level. Drug and side effect features were combined together to represent each pair of drug and side effect, which was deemed as a sample in this study. Furthermore, they were fed into a random forest (RF) algorithm to construct the prediction model, called the RF network model. Results: The RF network model was evaluated by several tests. The average of Matthews correlation coefficients on the balanced and unbalanced datasets was 0.640 and 0.641, respectively. Conclusion: The RF network model was superior to the models incorporating other machine learning algorithms and one previous model. Finally, we also investigated the influence of two feature dimension parameters on the RF network model and found that our model was not very sensitive to these parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangyu完成签到,获得积分10
1秒前
看文献的高光谱完成签到,获得积分10
1秒前
WYN完成签到 ,获得积分10
1秒前
2秒前
大傻春完成签到 ,获得积分10
2秒前
2秒前
3秒前
阿萌完成签到 ,获得积分10
3秒前
seventonight2完成签到,获得积分10
3秒前
陳.发布了新的文献求助10
4秒前
Ningxin完成签到,获得积分10
5秒前
三物完成签到 ,获得积分10
5秒前
wqwq69完成签到,获得积分10
5秒前
铝离子发布了新的文献求助10
6秒前
大个应助科研通管家采纳,获得10
7秒前
ZHY完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
毛毛弟发布了新的文献求助10
8秒前
8秒前
若水完成签到 ,获得积分10
9秒前
14999发布了新的文献求助10
9秒前
Tina完成签到,获得积分10
9秒前
SMULJL完成签到 ,获得积分10
10秒前
10秒前
大气石头完成签到,获得积分10
10秒前
11秒前
狂野忆文发布了新的文献求助10
11秒前
lingo完成签到 ,获得积分10
12秒前
12秒前
yellow完成签到 ,获得积分10
12秒前
13秒前
tomato的痛苦你不知道完成签到,获得积分10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
狂野忆文发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027