Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks

副作用(计算机科学) 药品 计算机科学 构造(python库) 随机森林 机器学习 网络模型 异构网络 人工智能 医学 药理学 电信 无线网络 程序设计语言 无线
作者
Xian Zhao,Lei Chen,Zi-Han Guo,Tao Liu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:14 (8): 709-720 被引量:70
标识
DOI:10.2174/1574893614666190220114644
摘要

Background: The side effects of drugs are not only harmful to humans but also the major reasons for withdrawing approved drugs, bringing greater risks for pharmaceutical companies. However, detecting the side effects for a given drug via traditional experiments is time- consuming and expensive. In recent years, several computational methods have been proposed to predict the side effects of drugs. However, most of the methods cannot effectively integrate the heterogeneous properties of drugs. Methods: In this study, we adopted a network embedding method, Mashup, to extract essential and informative drug features from several drug heterogeneous networks, representing different properties of drugs. For side effects, a network was also built, from where side effect features were extracted. These features can capture essential information about drugs and side effects in a network level. Drug and side effect features were combined together to represent each pair of drug and side effect, which was deemed as a sample in this study. Furthermore, they were fed into a random forest (RF) algorithm to construct the prediction model, called the RF network model. Results: The RF network model was evaluated by several tests. The average of Matthews correlation coefficients on the balanced and unbalanced datasets was 0.640 and 0.641, respectively. Conclusion: The RF network model was superior to the models incorporating other machine learning algorithms and one previous model. Finally, we also investigated the influence of two feature dimension parameters on the RF network model and found that our model was not very sensitive to these parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhiyang发布了新的文献求助30
1秒前
TAO完成签到,获得积分10
2秒前
wanci应助Chenqzl采纳,获得10
2秒前
丘比特应助ZHIXIANGWENG采纳,获得10
2秒前
Akim应助ZHIXIANGWENG采纳,获得10
2秒前
Orange应助ZHIXIANGWENG采纳,获得10
2秒前
华仔应助ZHIXIANGWENG采纳,获得10
2秒前
陌路孤星发布了新的文献求助10
2秒前
上官若男应助ZHIXIANGWENG采纳,获得10
2秒前
3秒前
俏皮的厉发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助无奈的三德采纳,获得10
5秒前
花花完成签到 ,获得积分20
6秒前
深情安青应助雨幕采纳,获得10
6秒前
7秒前
似水流年发布了新的文献求助10
7秒前
8秒前
Woo完成签到 ,获得积分10
8秒前
8秒前
雨下完成签到,获得积分10
8秒前
sirius完成签到,获得积分10
9秒前
zhiyang完成签到,获得积分20
9秒前
专注玩手机的可乐关注了科研通微信公众号
9秒前
cy完成签到,获得积分20
10秒前
10秒前
Jessic完成签到,获得积分10
10秒前
乔佳怡完成签到,获得积分10
10秒前
德行天下完成签到,获得积分10
10秒前
左旋溜达鸡完成签到,获得积分10
11秒前
11秒前
陈陈陈皮完成签到,获得积分10
11秒前
12秒前
李爱国应助王讯采纳,获得10
12秒前
脑洞疼应助俏皮的厉采纳,获得10
13秒前
13秒前
15秒前
15秒前
听蝉完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461701
求助须知:如何正确求助?哪些是违规求助? 3055391
关于积分的说明 9047754
捐赠科研通 2745178
什么是DOI,文献DOI怎么找? 1506027
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695411