重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Predicting Drug Side Effects with Compact Integration of Heterogeneous Networks

副作用(计算机科学) 药品 计算机科学 构造(python库) 随机森林 机器学习 网络模型 异构网络 人工智能 医学 药理学 电信 无线网络 程序设计语言 无线
作者
Xian Zhao,Lei Chen,Zi-Han Guo,Tao Liu
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:14 (8): 709-720 被引量:70
标识
DOI:10.2174/1574893614666190220114644
摘要

Background: The side effects of drugs are not only harmful to humans but also the major reasons for withdrawing approved drugs, bringing greater risks for pharmaceutical companies. However, detecting the side effects for a given drug via traditional experiments is time- consuming and expensive. In recent years, several computational methods have been proposed to predict the side effects of drugs. However, most of the methods cannot effectively integrate the heterogeneous properties of drugs. Methods: In this study, we adopted a network embedding method, Mashup, to extract essential and informative drug features from several drug heterogeneous networks, representing different properties of drugs. For side effects, a network was also built, from where side effect features were extracted. These features can capture essential information about drugs and side effects in a network level. Drug and side effect features were combined together to represent each pair of drug and side effect, which was deemed as a sample in this study. Furthermore, they were fed into a random forest (RF) algorithm to construct the prediction model, called the RF network model. Results: The RF network model was evaluated by several tests. The average of Matthews correlation coefficients on the balanced and unbalanced datasets was 0.640 and 0.641, respectively. Conclusion: The RF network model was superior to the models incorporating other machine learning algorithms and one previous model. Finally, we also investigated the influence of two feature dimension parameters on the RF network model and found that our model was not very sensitive to these parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ray发布了新的文献求助10
2秒前
香蕉觅云应助小陈采纳,获得10
2秒前
今后应助杨岱溪采纳,获得10
3秒前
Freelover完成签到,获得积分10
3秒前
兴奋天荷给兴奋天荷的求助进行了留言
4秒前
噜噜噜完成签到,获得积分10
4秒前
科目三应助yanxi采纳,获得10
4秒前
潇洒从彤完成签到,获得积分10
5秒前
文献消化能力不足完成签到,获得积分10
5秒前
5秒前
布丁完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
你好完成签到,获得积分10
10秒前
Ken完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
芋泥卷完成签到,获得积分20
12秒前
12秒前
Chloe完成签到,获得积分20
12秒前
Iris发布了新的文献求助10
12秒前
虚心文轩发布了新的文献求助10
14秒前
酸菜余发布了新的文献求助10
14秒前
14秒前
许丫丫完成签到,获得积分10
14秒前
thebin发布了新的文献求助30
15秒前
你好发布了新的文献求助10
16秒前
16秒前
16秒前
小蘑菇应助杨利英采纳,获得10
16秒前
玖月发布了新的文献求助10
17秒前
18秒前
Dsivan完成签到,获得积分10
18秒前
18秒前
杨岱溪发布了新的文献求助10
18秒前
Pinch完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468225
求助须知:如何正确求助?哪些是违规求助? 4571705
关于积分的说明 14331270
捐赠科研通 4498225
什么是DOI,文献DOI怎么找? 2464411
邀请新用户注册赠送积分活动 1453131
关于科研通互助平台的介绍 1427777