Application of magnetic resonance sounding to tunnels for advanced detection of water-related disasters: A case study in the Dadushan Tunnel, Guizhou, China

测深 喀斯特 地质学 磁场 垂直的 发掘 天线(收音机) 地球磁场 共振(粒子物理) 物理 计算机科学 岩土工程 数学 电信 几何学 古生物学 海洋学 粒子物理学 量子力学
作者
Shengwu Qin,Zhongjun Ma,Chuandong Jiang,Jun Lin,Mingzhou Bai,Tingting Lin,Xiaofeng Yi,Xinlei Shang
出处
期刊:Tunnelling and Underground Space Technology [Elsevier]
卷期号:84: 364-372 被引量:23
标识
DOI:10.1016/j.tust.2018.11.032
摘要

The Dadushan Tunnel, which is located in the southwestern karst region of China in Guizhou Province, is one of the key elements of the Hukun High-Speed Railway. Cavities occur unpredictably in the tunnel, and well-developed karst conduits are frequently encountered. These features result in safety problems, such as water gushing and rapid flooding. In this paper, on the theoretical basis of the surface Magnetic Resonance Sounding (MRS) method, we propose Tunnel Magnetic Resonance Sounding (TMRS) in the tunnel space model and derive the expression of the MRS response signal with a vertical antenna. A direction angle formula is then created to calculate the perpendicular component of the transmitting field at arbitrary geomagnetic field and antenna directions. In addition, we present a comprehensive study on the TMRS based on forward modeling and numerical experiments. The relationship between the magnetic resonance signal response and the position and water content of water-bearing structures is obtained by forward modeling. In the numerical examples, the inversion results agree with the numerical model. The application of the method to a case study involving the Dadushan Tunnel indicates that the prediction results agree well with the excavation results. This paper establishes a theoretical basis for the development of a magnetic resonance sounding instrument for use in tunnels for the advanced detection of water-rich geological structures that can produce tunnel disasters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助幸福胡萝卜采纳,获得10
1秒前
积极晓兰完成签到,获得积分10
1秒前
1秒前
离子电池完成签到,获得积分10
1秒前
小熊饼干完成签到,获得积分10
1秒前
Ryuichi完成签到 ,获得积分10
2秒前
冷静的平安完成签到,获得积分20
2秒前
周士乐完成签到,获得积分10
2秒前
juan完成签到,获得积分10
3秒前
cheeselemon182完成签到,获得积分10
3秒前
英勇凝旋完成签到,获得积分10
4秒前
HopeStar发布了新的文献求助10
4秒前
4秒前
石幻枫完成签到 ,获得积分10
5秒前
生动盼秋发布了新的文献求助10
5秒前
韭黄发布了新的文献求助10
5秒前
Eliauk完成签到,获得积分10
6秒前
小野狼完成签到,获得积分10
6秒前
威武诺言完成签到,获得积分10
6秒前
fengye发布了新的文献求助10
6秒前
李东东完成签到 ,获得积分10
6秒前
Zn应助hulin_zjxu采纳,获得10
6秒前
海鸥海鸥发布了新的文献求助50
7秒前
小乔要努力变强完成签到,获得积分10
7秒前
YANG完成签到 ,获得积分10
7秒前
7秒前
在水一方应助马保国123采纳,获得10
7秒前
Jovid完成签到,获得积分10
8秒前
建成完成签到,获得积分10
8秒前
爆米花应助落落采纳,获得10
8秒前
852应助liu123479采纳,获得20
9秒前
9秒前
无情念之发布了新的文献求助10
9秒前
lilac应助Rocky采纳,获得10
9秒前
9秒前
深情安青应助OYE采纳,获得10
10秒前
10秒前
李爱国应助热情的阿猫桑采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759