测深
喀斯特
地质学
磁场
垂直的
发掘
天线(收音机)
地球磁场
共振(粒子物理)
物理
计算机科学
岩土工程
数学
电信
几何学
古生物学
海洋学
粒子物理学
量子力学
作者
Shengwu Qin,Zhongjun Ma,Chuandong Jiang,Jun Lin,Mingzhou Bai,Tingting Lin,Xiaofeng Yi,Xinlei Shang
标识
DOI:10.1016/j.tust.2018.11.032
摘要
The Dadushan Tunnel, which is located in the southwestern karst region of China in Guizhou Province, is one of the key elements of the Hukun High-Speed Railway. Cavities occur unpredictably in the tunnel, and well-developed karst conduits are frequently encountered. These features result in safety problems, such as water gushing and rapid flooding. In this paper, on the theoretical basis of the surface Magnetic Resonance Sounding (MRS) method, we propose Tunnel Magnetic Resonance Sounding (TMRS) in the tunnel space model and derive the expression of the MRS response signal with a vertical antenna. A direction angle formula is then created to calculate the perpendicular component of the transmitting field at arbitrary geomagnetic field and antenna directions. In addition, we present a comprehensive study on the TMRS based on forward modeling and numerical experiments. The relationship between the magnetic resonance signal response and the position and water content of water-bearing structures is obtained by forward modeling. In the numerical examples, the inversion results agree with the numerical model. The application of the method to a case study involving the Dadushan Tunnel indicates that the prediction results agree well with the excavation results. This paper establishes a theoretical basis for the development of a magnetic resonance sounding instrument for use in tunnels for the advanced detection of water-rich geological structures that can produce tunnel disasters.
科研通智能强力驱动
Strongly Powered by AbleSci AI