Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification

计算机科学 卷积神经网络 水准点(测量) 人工智能 上下文图像分类 算法 图像(数学) 遗传算法 建筑 领域(数学分析) 模式识别(心理学) 机器学习 艺术 数学分析 视觉艺术 数学 大地测量学 地理
作者
Yanan Sun,Bing Xue,Mengjie Zhang,Gary G. Yen,Jiancheng Lv
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (9): 3840-3854 被引量:474
标识
DOI:10.1109/tcyb.2020.2983860
摘要

Convolutional Neural Networks (CNNs) have gained a remarkable success on many image classification tasks in recent years. However, the performance of CNNs highly relies upon their architectures. For most state-of-the-art CNNs, their architectures are often manually-designed with expertise in both CNNs and the investigated problems. Therefore, it is difficult for users, who have no extended expertise in CNNs, to design optimal CNN architectures for their own image classification problems of interest. In this paper, we propose an automatic CNN architecture design method by using genetic algorithms, to effectively address the image classification tasks. The most merit of the proposed algorithm remains in its "automatic" characteristic that users do not need domain knowledge of CNNs when using the proposed algorithm, while they can still obtain a promising CNN architecture for the given images. The proposed algorithm is validated on widely used benchmark image classification datasets, by comparing to the state-of-the-art peer competitors covering eight manually-designed CNNs, seven automatic+manually tuning and five automatic CNN architecture design algorithms. The experimental results indicate the proposed algorithm outperforms the existing automatic CNN architecture design algorithms in terms of classification accuracy, parameter numbers and consumed computational resources. The proposed algorithm also shows the very comparable classification accuracy to the best one from manually-designed and automatic+manually tuning CNNs, while consumes much less of computational resource.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yangyangyang采纳,获得10
刚刚
刚刚
漠北完成签到,获得积分10
刚刚
刚刚
Isabel完成签到 ,获得积分10
1秒前
起风了完成签到,获得积分10
1秒前
2秒前
Zjn-完成签到,获得积分10
2秒前
良辰应助lost采纳,获得10
2秒前
靓丽梦桃完成签到,获得积分20
3秒前
3秒前
0306完成签到,获得积分10
3秒前
李创业完成签到,获得积分10
3秒前
庆次完成签到 ,获得积分10
4秒前
ZY发布了新的文献求助10
4秒前
36456657应助跳跃的罡采纳,获得10
4秒前
36456657应助跳跃的罡采纳,获得10
4秒前
pluto应助跳跃的罡采纳,获得10
4秒前
丘比特应助跳跃的罡采纳,获得10
4秒前
4秒前
左手树完成签到,获得积分10
5秒前
5秒前
踏实的似狮完成签到,获得积分10
5秒前
正直画笔完成签到 ,获得积分10
5秒前
草履虫完成签到 ,获得积分10
6秒前
靓丽梦桃发布了新的文献求助10
6秒前
李创业发布了新的文献求助10
7秒前
炙热冰夏发布了新的文献求助10
7秒前
autobot1完成签到,获得积分10
7秒前
科研通AI5应助111采纳,获得10
7秒前
烟花应助Wang采纳,获得10
7秒前
曼尼发布了新的文献求助10
7秒前
赘婿应助桑姊采纳,获得10
9秒前
斯文败类应助Lvj采纳,获得10
9秒前
SYLH应助YHL采纳,获得10
9秒前
ranqi完成签到,获得积分10
9秒前
9秒前
10秒前
17808352679发布了新的文献求助10
10秒前
易生完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762