佩多:嘘
材料科学
纳米线
热电效应
纳米复合材料
塞贝克系数
导电聚合物
纳米技术
复合材料
聚合物
热导率
热力学
物理
作者
Zihan Tian,Haihui Liu,Ning Wang,Yanxin Liu,Xingxiang Zhang
标识
DOI:10.1007/s10854-018-9834-1
摘要
Poly (3,4-ethylenedioxythiophene) nanowires (PEDOT NWs) with high electric conductivity were synthesized by a facile self-assembled micellar soft-template method. And then, Bi2Te3 powders and Bi2Te3 nanowires (Bi2Te3 NWs) were added as inorganic filler to form the PEDOT NWs/inorganic nanocomposite films by a simple and convenient vacuum filtration method. The thermoelectric (TE) properties of the flexible films were characterized. PEDOT NWs film exhibited the high σ value of 249.5 S cm−1 and does not require any treatment at room temperature. By incorporating both Bi2Te3 powders and Bi2Te3 NWs into these PEDOT NWs, the power factor of the polymer/inorganic composite materials is enhanced. The resulting PEDOT NWs/Bi2Te3 powders nanocomposite film exhibited a high power factor of 7.49 µW m−1 K−2 compared to that of 2.54 µW m−1 K−2 in PEDOT NWs. A maximum power factor of 9.06 µW m−1 K−2 is obtained from the PEDOT NWs/Bi2Te3 NWs composite film containing 10 wt% Bi2Te3 NWs at room temperature, which is about 3 of times that of the pure PEDOT NWs film. These composites provide a promising route to flexible and high-performance thermoelectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI