电致发光
材料科学
有机发光二极管
光电子学
荧光
光致发光
共发射极
量子产额
姜黄素
放大自发辐射
激光器
光学
纳米技术
化学
物理
生物化学
姜黄素
图层(电子)
作者
Hao Ye,Dae Hyeon Kim,Xiankai Chen,Atula S. D. Sandanayaka,Jong Uk Kim,Elena Zaborova,Gabriel Canard,Youichi Tsuchiya,Eun Young Choi,J. W. Wu,Fréderic Fagès,Jean‐Luc Brédas,Anthony D’Aléo,Jean‐Charles Ribierre,Chihaya Adachi
标识
DOI:10.1021/acs.chemmater.8b02247
摘要
Near-infrared (NIR) organic light-emitting devices have aroused increasing interest because of their potential applications such as information-secured displays, photodynamic therapy, and optical telecommunication. While thermally activated delayed fluorescent (TADF) emitters have been used in a variety of high-performance organic light-emitting diodes (OLEDs) emitting in the visible spectral range, efficient NIR TADF materials have been rarely reported. Herein, we designed and synthesized a novel solution-processable NIR TADF dimeric borondifluoride curcuminoid derivative with remarkable photophysical, electroluminescence and amplified spontaneous emission properties. This dye was specifically developed to shift the emission of borondifluoride curcuminoid moiety toward longer wavelengths in the NIR region while keeping a high photoluminescence quantum yield. The most efficient OLED fabricated in this study exhibits a maximum external quantum efficiency of 5.1% for a maximum emission wavelength of 758 nm, which ranks among the highest performance for NIR electroluminescence. In addition, this NIR TADF emitter in doped thin films displays amplified spontaneous emission above 800 nm with a threshold as low as 7.5 μJ/cm2, providing evidence that this material is suitable for the realization of high-performance NIR organic semiconductor lasers.
科研通智能强力驱动
Strongly Powered by AbleSci AI