生物
接种
生物地球化学循环
氮气循环
酸雨
营养物
土壤pH值
生态系统
外生菌根
土壤水分
植物
土壤生物学
共生
陆地生态系统
农学
园艺
菌根
生态学
氮气
细菌
化学
遗传学
有机化学
作者
Yan Li,Zhan Chen,Ji‐Zheng He,Qing Wang,Congcong Shen,Yuan Ge
标识
DOI:10.1111/1462-2920.14457
摘要
Summary Acid rain can cause severe effects on soil biota and nutrient biogeochemical cycles in the forest ecosystem, but how plant‐symbiotic ectomycorrhizal fungi will modulate the effects remains unknown. Here, we conducted a full factorial field experiment in a Masson pine forest by simultaneously controlling the acidity of the simulated rain (pH 5.6 vs. pH 3.5) and the ectomycorrhizal fungi Pisolithus tinctorius inoculation (non‐inoculation vs. inoculation), to investigate the effects on ammonia oxidizers and denitrifiers. After 10 months, compared with the control (rain pH 5.6, and non‐inoculation), simulated acid rain (pH 3.5) reduced soil nutrient content, decreased archaeal amoA gene abundance and inhibited denitrification enzyme activity. Also, simulated acid rain altered the community compositions of all the examined functional genes (archaeal amoA , bacterial amoA , nirK , nirS and nosZ ). However, inoculation with ectomycorrhizal fungi under acid rain stress recovered soil nutrient content, archaeal amoA gene abundance and denitrification enzyme activity to levels comparable to the control, suggesting that ectomycorrhizal fungi inoculation ameliorates simulated acid rain effects. Taken together, ectomycorrhizal fungi inoculation – potentially through improving soil substrate availability – could alleviate the deleterious effects of acid rain on nitrogen cycling microbes in forest soils.
科研通智能强力驱动
Strongly Powered by AbleSci AI