代谢组
微生物群
计算生物学
组学
代谢组学
鉴定(生物学)
数据集成
生物
基因组
计算机科学
人体微生物群
生物信息学
数据挖掘
遗传学
基因
生态学
作者
Helle Pedersen,Sofia K. Forslund,Valborg Guðmundsdóttir,Anders Østergaard Petersen,Falk Hildebrand,Tuulia Hyötyläinen,Trine Nielsen,Torben Hansen,Peer Bork,S. Dusko Ehrlich,Søren Brunak,Matej Orešič,Oluf Pedersen,Henrik Bjørn Nielsen
出处
期刊:Nature Protocols
[Springer Nature]
日期:2018-10-31
卷期号:13 (12): 2781-2800
被引量:93
标识
DOI:10.1038/s41596-018-0064-z
摘要
We recently presented a three-pronged association study that integrated human intestinal microbiome data derived from shotgun-based sequencing with untargeted serum metabolome data and measures of host physiology. Metabolome and microbiome data are high dimensional, posing a major challenge for data integration. Here, we present a step-by-step computational protocol that details and discusses the dimensionality-reduction techniques used and methods for subsequent integration and interpretation of such heterogeneous types of data. Dimensionality reduction was achieved through a combination of data normalization approaches, binning of co-abundant genes and metabolites, and integration of prior biological knowledge. The use of prior knowledge to overcome functional redundancy across microbiome species is one central advance of our method over available alternative approaches. Applying this framework, other investigators can integrate various '-omics' readouts with variables of host physiology or any other phenotype of interest (e.g., connecting host and microbiome readouts to disease severity or treatment outcome in a clinical cohort) in a three-pronged association analysis to identify potential mechanistic links to be tested in experimental settings. Although we originally developed the framework for a human metabolome-microbiome study, it is generalizable to other organisms and environmental metagenomes, as well as to studies including other -omics domains such as transcriptomics and proteomics. The provided R code runs in ~1 h on a standard PC.
科研通智能强力驱动
Strongly Powered by AbleSci AI