Characterization of curcumin loaded gliadin-lecithin composite nanoparticles fabricated by antisolvent precipitation in different blending sequences

Zeta电位 粒径 纳米颗粒 化学工程 共沉淀 卵磷脂 降水 材料科学 姜黄素 醇溶蛋白 溶剂 表面电荷 化学 色谱法 纳米技术 有机化学 生物化学 物理化学 气象学 面筋 工程类 物理
作者
Shufang Yang,Lei Dai,Cuixia Sun,Yanxiang Gao
出处
期刊:Food Hydrocolloids [Elsevier]
卷期号:85: 185-194 被引量:82
标识
DOI:10.1016/j.foodhyd.2018.07.015
摘要

Anti-solvent precipitation is a most commonly means of fabricating food-grade nanoparticles, while the impact of the blending sequence on the formation of nanoparticles is still unclear. In this study, curcumin (Cur) loaded nanoparticles were fabricated by antisolvent precipitation method using gliadin and lecithin in different blending sequences. Compared to stepwise antisolvent precipitation (SASP), antisolvent coprecipitation (ASCP) was capable of improving delivery efficiency with smaller particle size, lower turbidity and higher encapsulation efficiency of Cur. Based on the results of zeta-potential and turbidity, ASCP exhibited the greater capability to allocate lecithin on the particle surface than SASP, which potentially resulted in the smoother surface of gliadin-lecithin-Cur nanoparticles in morphological observation. The Cur entrapped in the nanoparticles was confirmed by fluorescence spectrum analysis. The results from particle size, Fourier transform infrared and circular dichroism analysis revealed that Cur was interacted with gliadin and lecithin mainly through hydrogen bonding, electrostatic interaction and hydrophobic effects, and interpreted that ASCP was capable of remarkably changing the secondary structure of gliadin, which was beneficial for reduction of the particle size. An alternative advantage of ASCP was to protect Cur in the nanoparticles against UV irradiation and thermal treatment with higher antioxidant capacity than SASP. Therefore, ASCP possessed wide applications in delivering bioactive compounds and the blending sequence played an important role on the performance of delivery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucky完成签到,获得积分10
刚刚
谨慎涵柏发布了新的文献求助10
刚刚
SciGPT应助心灵美发卡采纳,获得10
刚刚
彩色的蓝天完成签到,获得积分10
刚刚
hbb发布了新的文献求助10
刚刚
3137874883发布了新的文献求助10
2秒前
蒋若风发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
狗剩子完成签到,获得积分10
2秒前
Lvj完成签到,获得积分10
3秒前
bkagyin应助马保国123采纳,获得10
3秒前
3秒前
4秒前
大个应助乐观的幼珊采纳,获得10
4秒前
4秒前
4秒前
4秒前
顺顺完成签到,获得积分10
6秒前
6秒前
小马甲应助a1oft采纳,获得10
6秒前
Keke完成签到,获得积分10
6秒前
7秒前
自然秋柳发布了新的文献求助10
7秒前
candy6663339完成签到,获得积分10
7秒前
weiwei完成签到,获得积分10
7秒前
大个应助苗条的山晴采纳,获得10
8秒前
努力发一区完成签到 ,获得积分0
8秒前
蒋时晏应助恶恶么v采纳,获得30
8秒前
9秒前
9秒前
gennp完成签到,获得积分10
9秒前
gg完成签到,获得积分10
9秒前
1111发布了新的文献求助10
9秒前
情怀应助wjh采纳,获得10
10秒前
10秒前
Hey关闭了Hey文献求助
10秒前
学渣向下完成签到,获得积分10
10秒前
咚咚咚发布了新的文献求助10
10秒前
11秒前
willen完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759