Deep prior-based sparse representation model for diffraction imaging: A plug-and-play method

稀疏逼近 代表(政治) 水准点(测量) 衍射 计算机科学 图像分辨率 像素 人工智能 正规化(语言学) 算法 物理 光学 法学 地理 大地测量学 政治 政治学
作者
Baoshun Shi,Qiusheng Lian,Huibin Chang
出处
期刊:Signal Processing [Elsevier BV]
卷期号:168: 107350-107350 被引量:24
标识
DOI:10.1016/j.sigpro.2019.107350
摘要

Diffraction imaging problem, i.e. recovery of a high-resolution or high-quality image from the intensity diffraction pattern, arises in many science and engineering fields. Recent efforts to solve this problem are exploiting sparse representation techniques. However, existing sparse representation models cannot explore inherent priors of the images to be reconstructed sufficiently. Imaging algorithms employed such traditional sparse representation models often suffer from low-quality reconstructions in the case of the noise or low-resolution observation. To address this issue, we propose a deep prior-based sparse representation (DPSR) regularization model that can impose the sparsity and the deep prior on the unknown image. The DPSR model is a plug-and-play model, namely that one can plug any effective deep denoiser into this model. We apply this model to coded diffraction imaging. To perform high-resolution imaging, a sub-pixel resolution coded diffraction pattern observation model is proposed. Based on this observation model, a diffraction imaging optimization problem is formulated. The formulated optimization problem is tackled by using the alternating optimization strategy and the epigraph concept. Compared to the benchmark diffraction imaging algorithms, the proposed algorithm has a notable peak signal-to-noise ratio (PSNR) gain of about 2 dB. Meanwhile, the proposed algorithm can perform high-resolution diffraction imaging with the pixel super-resolution factor of 4 under the single observation case. A demo code of the proposed algorithm is available at https://github.com/shibaoshun/DPSR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2425发布了新的文献求助10
刚刚
酷酷学完成签到,获得积分10
刚刚
刚刚
刚刚
fafamimireredo完成签到,获得积分10
1秒前
bubu完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
呼呼发布了新的文献求助10
4秒前
完美世界应助zjiang采纳,获得10
4秒前
小聂发布了新的文献求助10
4秒前
4秒前
Cannel完成签到,获得积分20
5秒前
南瓜头完成签到 ,获得积分10
5秒前
66289发布了新的文献求助10
5秒前
淡淡的豁完成签到,获得积分0
6秒前
鸢尾蓝完成签到,获得积分10
6秒前
7秒前
SYLH应助Thunnus001采纳,获得50
7秒前
乐观的雅彤完成签到,获得积分10
7秒前
奥暖将完成签到,获得积分10
7秒前
朴实的凡阳完成签到,获得积分10
7秒前
8秒前
bkagyin应助自然有手就行采纳,获得10
8秒前
英姑应助haha采纳,获得30
8秒前
mj01完成签到,获得积分10
9秒前
9秒前
冰冰完成签到 ,获得积分10
9秒前
沄霄之上发布了新的文献求助10
9秒前
10秒前
Wayne完成签到,获得积分10
10秒前
11秒前
沐沐1003完成签到,获得积分10
11秒前
Hello应助gui采纳,获得10
11秒前
chenhua5460完成签到,获得积分10
11秒前
桥木有舟发布了新的文献求助10
12秒前
毛阳完成签到,获得积分10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582