Diabetes clusters and risk of diabetes-associated diseases

医学 糖尿病 斯科普斯 胰岛素抵抗 2型糖尿病 内科学 星团(航天器) 老年学 内分泌学 梅德林 政治学 法学 程序设计语言 计算机科学
作者
Shufang Liu,Wenquan Niu
出处
期刊:The Lancet Diabetes & Endocrinology [Elsevier BV]
卷期号:7 (11): 828-828 被引量:1
标识
DOI:10.1016/s2213-8587(19)30318-3
摘要

We read with interest the study by Zaharia and colleagues,1Zaharia OP Strassburger K Strom A et al.Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study.Lancet Diabetes Endocrinol. 2019; 7: 684-694Summary Full Text Full Text PDF PubMed Scopus (229) Google Scholar who adopted the diabetes five-cluster algorithm proposed in 2018 by Ahlqvist and colleagues2Ahlqvist E Storm P Käräjämäki A et al.Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables.Lancet Diabetes Endocrinol. 2018; 6: 361-369Summary Full Text Full Text PDF PubMed Scopus (984) Google Scholar and characterised a cohort of patients with different degrees of whole-body and adipose-tissue insulin resistance. The authors1Zaharia OP Strassburger K Strom A et al.Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study.Lancet Diabetes Endocrinol. 2019; 7: 684-694Summary Full Text Full Text PDF PubMed Scopus (229) Google Scholar reported distinct metabolic alterations and specific risk patterns for the development of diabetes-related comorbidities and complications after 5 years of follow-up. Here, we comment on two methodological aspects of this study. First, application of the diabetes five-cluster algorithm2Ahlqvist E Storm P Käräjämäki A et al.Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables.Lancet Diabetes Endocrinol. 2018; 6: 361-369Summary Full Text Full Text PDF PubMed Scopus (984) Google Scholar in the ongoing German Diabetes Study by Zaharia and colleagues1Zaharia OP Strassburger K Strom A et al.Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study.Lancet Diabetes Endocrinol. 2019; 7: 684-694Summary Full Text Full Text PDF PubMed Scopus (229) Google Scholar yielded a reproducibility of only 77% after following up patients with newly diagnosed diabetes for 5 years. In particular, the clustering pattern of the severe insulin-deficient diabetes (SIDD) group at baseline was almost reversed by the end of the 5 years of follow-up, which suggests that the diabetes five-cluster algorithm2Ahlqvist E Storm P Käräjämäki A et al.Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables.Lancet Diabetes Endocrinol. 2018; 6: 361-369Summary Full Text Full Text PDF PubMed Scopus (984) Google Scholar might not be suitable for this German diabetes cohort and the results should thus be interpreted cautiously. To validate this claim, assessment tools for cluster analysis, such as Jaccard coefficient,3Hennig C Cluster-wise assessment of cluster stability.Comput Stat Data Anal. 2007; 52: 258-271Crossref Scopus (376) Google Scholar a similarity measure between sets, are recommended to judge the effectiveness and stability of a proposed clustering algorithm in other independent groups.4Newby PK Tucker KL Empirically derived eating patterns using factor or cluster analysis: a review.Nutr Rev. 2004; 62: 177-203Crossref PubMed Google Scholar, 5Olsen SF Martuzzi M Elliott P Cluster analysis and disease mapping—why, when, and how? a step by step guide.BMJ. 1996; 313: 863-866Crossref PubMed Scopus (90) Google Scholar Second, the current German diabetes cohort involved 1105 patients at baseline, but only 33·2% of these patients were assessed during the 5 years of follow-up. Zaharia and colleagues interpreted this high loss rate as the result of ongoing cohort monitoring. To facilitate extrapolation of results, additional analyses should be done to see whether baseline characteristics are comparable between patients who were eligible but lost to follow-up at 5 years. We declare no competing interests. Diabetes clusters and risk of diabetes-associated diseases – Authors' replyWe thank Shufang Liu and Wenquan Niu for their interest in our Article,1 which applied the clustering algorithm proposed by Ahlqvist and colleagues2 to patients with diabetes in the German Diabetes Study (GDS).3 We would like to respond to their comments on the methodological aspects of our study. Full-Text PDF Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up studyCluster analysis can characterise cohorts with different degrees of whole-body and adipose-tissue insulin resistance. Specific diabetes clusters show different prevalence of diabetes complications at early stages of non-alcoholic fatty liver disease and diabetic neuropathy. These findings could help improve targeted prevention and treatment and enable precision medicine for diabetes and its comorbidities. Full-Text PDF

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助sc采纳,获得10
刚刚
1秒前
1秒前
gogo完成签到,获得积分10
1秒前
李健应助Desheng采纳,获得10
1秒前
an完成签到,获得积分10
1秒前
water应助DJMZ采纳,获得10
1秒前
2秒前
2秒前
shanshui完成签到,获得积分10
2秒前
Flechozo完成签到,获得积分20
2秒前
4秒前
5秒前
顾矜应助鹿lu采纳,获得10
5秒前
5秒前
nuyoah完成签到,获得积分10
5秒前
煎饼发布了新的文献求助10
6秒前
YWD完成签到 ,获得积分10
6秒前
流流124141完成签到,获得积分10
7秒前
快乐茗发布了新的文献求助10
7秒前
8秒前
8秒前
Flechozo发布了新的文献求助10
8秒前
8秒前
小小宝完成签到,获得积分10
8秒前
幸运草发布了新的文献求助10
8秒前
李李完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
今天开始吃草完成签到,获得积分20
10秒前
10秒前
WangXiaoze发布了新的文献求助10
10秒前
满意黎昕完成签到,获得积分10
10秒前
LL发布了新的文献求助10
11秒前
悲凉的翼完成签到 ,获得积分10
11秒前
英姑应助梦XING采纳,获得10
11秒前
乐乐应助蔡6705采纳,获得10
12秒前
葳蕤完成签到,获得积分10
12秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224