Development of Expert-Level Automated Detection of Epileptiform Discharges During Electroencephalogram Interpretation

脑电图 口译(哲学) 人工智能 癫痫 神经科学 心理学 医学 计算机科学 程序设计语言
作者
Jin Jing,Haoqi Sun,Jennifer A. Kim,Aline Herlopian,Ioannis Karakis,Marcus Ng,Jonathan J. Halford,Douglas Maus,Fonda Chan,Marjan Dolatshahi,Carlos Muniz,Catherine J. Chu,Valeria Saccà,Jay Pathmanathan,Wendong Ge,Justin Dauwels,Alice Lam,Andrew J. Cole,Sydney S. Cash,M. Brandon Westover
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:77 (1): 103-103 被引量:118
标识
DOI:10.1001/jamaneurol.2019.3485
摘要

Interictal epileptiform discharges (IEDs) in electroencephalograms (EEGs) are a biomarker of epilepsy, seizure risk, and clinical decline. However, there is a scarcity of experts qualified to interpret EEG results. Prior attempts to automate IED detection have been limited by small samples and have not demonstrated expert-level performance. There is a need for a validated automated method to detect IEDs with expert-level reliability.To develop and validate a computer algorithm with the ability to identify IEDs as reliably as experts and classify an EEG recording as containing IEDs vs no IEDs.A total of 9571 scalp EEG records with and without IEDs were used to train a deep neural network (SpikeNet) to perform IED detection. Independent training and testing data sets were generated from 13 262 IED candidates, independently annotated by 8 fellowship-trained clinical neurophysiologists, and 8520 EEG records containing no IEDs based on clinical EEG reports. Using the estimated spike probability, a classifier designating the whole EEG recording as positive or negative was also built.SpikeNet accuracy, sensitivity, and specificity compared with fellowship-trained neurophysiology experts for identifying IEDs and classifying EEGs as positive or negative or negative for IEDs. Statistical performance was assessed via calibration error and area under the receiver operating characteristic curve (AUC). All performance statistics were estimated using 10-fold cross-validation.SpikeNet surpassed both expert interpretation and an industry standard commercial IED detector, based on calibration error (SpikeNet, 0.041; 95% CI, 0.033-0.049; vs industry standard, 0.066; 95% CI, 0.060-0.078; vs experts, mean, 0.183; range, 0.081-0.364) and binary classification performance based on AUC (SpikeNet, 0.980; 95% CI, 0.977-0.984; vs industry standard, 0.882; 95% CI, 0.872-0.893). Whole EEG classification had a mean calibration error of 0.126 (range, 0.109-0.1444) vs experts (mean, 0.197; range, 0.099-0.372) and AUC of 0.847 (95% CI, 0.830-0.865).In this study, SpikeNet automatically detected IEDs and classified whole EEGs as IED-positive or IED-negative. This may be the first time an algorithm has been shown to exceed expert performance for IED detection in a representative sample of EEGs and may thus be a valuable tool for expedited review of EEGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
胖纸完成签到,获得积分10
1秒前
1秒前
2秒前
Isabella完成签到,获得积分20
2秒前
11完成签到,获得积分10
2秒前
Charail发布了新的文献求助30
3秒前
li发布了新的文献求助10
3秒前
Wayne应助小确幸采纳,获得10
3秒前
pitto发布了新的文献求助10
4秒前
WYJie发布了新的文献求助10
4秒前
Isabella发布了新的文献求助10
5秒前
顺心的书包完成签到,获得积分10
5秒前
6秒前
NexusExplorer应助错过采纳,获得10
6秒前
李小伟完成签到,获得积分10
8秒前
8秒前
卡卡发布了新的文献求助10
9秒前
10秒前
12秒前
yeyeming完成签到,获得积分10
12秒前
12秒前
Hello应助研友_LapYN8采纳,获得10
12秒前
小马甲应助nanfeng采纳,获得10
13秒前
XYF完成签到 ,获得积分10
13秒前
DOUDOU完成签到,获得积分10
13秒前
dafhluih应助zhogwe采纳,获得10
14秒前
xiao发布了新的文献求助10
14秒前
baomingqiu发布了新的文献求助10
15秒前
激情的诗柳完成签到,获得积分10
16秒前
16秒前
zzz完成签到 ,获得积分10
16秒前
Orange应助yibo采纳,获得10
16秒前
hoongyan完成签到 ,获得积分10
17秒前
LZM完成签到,获得积分10
17秒前
桐夏发布了新的文献求助10
17秒前
甜蜜冰萍完成签到,获得积分10
18秒前
领导范儿应助个性砖家采纳,获得10
18秒前
wisteety发布了新的文献求助10
18秒前
愤怒的小火山完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155593
求助须知:如何正确求助?哪些是违规求助? 2806820
关于积分的说明 7870825
捐赠科研通 2465126
什么是DOI,文献DOI怎么找? 1312144
科研通“疑难数据库(出版商)”最低求助积分说明 629889
版权声明 601892