Development of Expert-Level Automated Detection of Epileptiform Discharges During Electroencephalogram Interpretation

脑电图 口译(哲学) 人工智能 癫痫 神经科学 心理学 医学 计算机科学 程序设计语言
作者
Jin Jing,Haoqi Sun,Jennifer A. Kim,Aline Herlopian,Ioannis Karakis,Marcus Ng,Jonathan J. Halford,Douglas Maus,Fonda Chan,Marjan Dolatshahi,Carlos Muniz,Catherine J. Chu,Valeria Saccà,Jay Pathmanathan,Wendong Ge,Justin Dauwels,Alice Lam,Andrew J. Cole,Sydney S. Cash,M. Brandon Westover
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:77 (1): 103-103 被引量:148
标识
DOI:10.1001/jamaneurol.2019.3485
摘要

Interictal epileptiform discharges (IEDs) in electroencephalograms (EEGs) are a biomarker of epilepsy, seizure risk, and clinical decline. However, there is a scarcity of experts qualified to interpret EEG results. Prior attempts to automate IED detection have been limited by small samples and have not demonstrated expert-level performance. There is a need for a validated automated method to detect IEDs with expert-level reliability.To develop and validate a computer algorithm with the ability to identify IEDs as reliably as experts and classify an EEG recording as containing IEDs vs no IEDs.A total of 9571 scalp EEG records with and without IEDs were used to train a deep neural network (SpikeNet) to perform IED detection. Independent training and testing data sets were generated from 13 262 IED candidates, independently annotated by 8 fellowship-trained clinical neurophysiologists, and 8520 EEG records containing no IEDs based on clinical EEG reports. Using the estimated spike probability, a classifier designating the whole EEG recording as positive or negative was also built.SpikeNet accuracy, sensitivity, and specificity compared with fellowship-trained neurophysiology experts for identifying IEDs and classifying EEGs as positive or negative or negative for IEDs. Statistical performance was assessed via calibration error and area under the receiver operating characteristic curve (AUC). All performance statistics were estimated using 10-fold cross-validation.SpikeNet surpassed both expert interpretation and an industry standard commercial IED detector, based on calibration error (SpikeNet, 0.041; 95% CI, 0.033-0.049; vs industry standard, 0.066; 95% CI, 0.060-0.078; vs experts, mean, 0.183; range, 0.081-0.364) and binary classification performance based on AUC (SpikeNet, 0.980; 95% CI, 0.977-0.984; vs industry standard, 0.882; 95% CI, 0.872-0.893). Whole EEG classification had a mean calibration error of 0.126 (range, 0.109-0.1444) vs experts (mean, 0.197; range, 0.099-0.372) and AUC of 0.847 (95% CI, 0.830-0.865).In this study, SpikeNet automatically detected IEDs and classified whole EEGs as IED-positive or IED-negative. This may be the first time an algorithm has been shown to exceed expert performance for IED detection in a representative sample of EEGs and may thus be a valuable tool for expedited review of EEGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北海之北发布了新的文献求助10
刚刚
刚刚
英俊绿海完成签到 ,获得积分10
1秒前
6666完成签到,获得积分10
1秒前
2秒前
cc发布了新的文献求助10
2秒前
zzzz发布了新的文献求助10
2秒前
3秒前
彭于晏应助CHL5722采纳,获得10
4秒前
5秒前
心灵尔安完成签到,获得积分10
6秒前
斯文败类应助北冥鱼采纳,获得10
6秒前
千纸鹤发布了新的文献求助10
7秒前
8秒前
汉堡包应助赵丽红采纳,获得10
8秒前
btyjs完成签到,获得积分10
8秒前
9秒前
捏个小雪团完成签到 ,获得积分10
11秒前
JamesPei应助虚幻心锁采纳,获得10
11秒前
马海鑫完成签到 ,获得积分10
12秒前
13秒前
欣喜书蕾完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
铲铲大王完成签到 ,获得积分10
16秒前
氕氘氚完成签到 ,获得积分10
18秒前
Lxx777完成签到,获得积分10
18秒前
闪闪的炳发布了新的文献求助10
18秒前
20秒前
孔wj完成签到,获得积分10
20秒前
在水一方应助江思可采纳,获得10
20秒前
inches完成签到 ,获得积分10
21秒前
22秒前
虚幻心锁发布了新的文献求助10
22秒前
Doki完成签到 ,获得积分20
22秒前
科研通AI5应助热孜宛古丽采纳,获得10
22秒前
Lucas应助yinyuwei采纳,获得10
23秒前
可爱的函函应助Suniex采纳,获得10
24秒前
24秒前
24秒前
An发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883328
求助须知:如何正确求助?哪些是违规求助? 4168897
关于积分的说明 12935533
捐赠科研通 3929248
什么是DOI,文献DOI怎么找? 2155967
邀请新用户注册赠送积分活动 1174364
关于科研通互助平台的介绍 1079108