Development of Expert-Level Automated Detection of Epileptiform Discharges During Electroencephalogram Interpretation

脑电图 口译(哲学) 人工智能 癫痫 神经科学 心理学 医学 计算机科学 程序设计语言
作者
Jin Jing,Haoqi Sun,Jennifer A. Kim,Aline Herlopian,Ioannis Karakis,Marcus Ng,Jonathan J. Halford,Douglas Maus,Fonda Chan,Marjan Dolatshahi,Carlos Muniz,Catherine J. Chu,Valeria Saccà,Jay Pathmanathan,Wendong Ge,Justin Dauwels,Alice Lam,Andrew J. Cole,Sydney S. Cash,M. Brandon Westover
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:77 (1): 103-103 被引量:148
标识
DOI:10.1001/jamaneurol.2019.3485
摘要

Interictal epileptiform discharges (IEDs) in electroencephalograms (EEGs) are a biomarker of epilepsy, seizure risk, and clinical decline. However, there is a scarcity of experts qualified to interpret EEG results. Prior attempts to automate IED detection have been limited by small samples and have not demonstrated expert-level performance. There is a need for a validated automated method to detect IEDs with expert-level reliability.To develop and validate a computer algorithm with the ability to identify IEDs as reliably as experts and classify an EEG recording as containing IEDs vs no IEDs.A total of 9571 scalp EEG records with and without IEDs were used to train a deep neural network (SpikeNet) to perform IED detection. Independent training and testing data sets were generated from 13 262 IED candidates, independently annotated by 8 fellowship-trained clinical neurophysiologists, and 8520 EEG records containing no IEDs based on clinical EEG reports. Using the estimated spike probability, a classifier designating the whole EEG recording as positive or negative was also built.SpikeNet accuracy, sensitivity, and specificity compared with fellowship-trained neurophysiology experts for identifying IEDs and classifying EEGs as positive or negative or negative for IEDs. Statistical performance was assessed via calibration error and area under the receiver operating characteristic curve (AUC). All performance statistics were estimated using 10-fold cross-validation.SpikeNet surpassed both expert interpretation and an industry standard commercial IED detector, based on calibration error (SpikeNet, 0.041; 95% CI, 0.033-0.049; vs industry standard, 0.066; 95% CI, 0.060-0.078; vs experts, mean, 0.183; range, 0.081-0.364) and binary classification performance based on AUC (SpikeNet, 0.980; 95% CI, 0.977-0.984; vs industry standard, 0.882; 95% CI, 0.872-0.893). Whole EEG classification had a mean calibration error of 0.126 (range, 0.109-0.1444) vs experts (mean, 0.197; range, 0.099-0.372) and AUC of 0.847 (95% CI, 0.830-0.865).In this study, SpikeNet automatically detected IEDs and classified whole EEGs as IED-positive or IED-negative. This may be the first time an algorithm has been shown to exceed expert performance for IED detection in a representative sample of EEGs and may thus be a valuable tool for expedited review of EEGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适的素发布了新的文献求助10
1秒前
饭神仙鱼完成签到,获得积分10
1秒前
万能图书馆应助Jerry采纳,获得10
2秒前
传奇3应助nn采纳,获得10
2秒前
2秒前
刘可发布了新的文献求助10
2秒前
沉静胜完成签到,获得积分10
2秒前
在水一方应助无心采纳,获得10
2秒前
呃呃呃呃完成签到,获得积分10
3秒前
3秒前
Sickey完成签到,获得积分10
3秒前
脑洞疼应助slgzhangtao采纳,获得10
3秒前
睿力完成签到,获得积分10
4秒前
Hazel发布了新的文献求助10
4秒前
喜悦兰完成签到,获得积分10
4秒前
万能图书馆应助现实的筮采纳,获得10
4秒前
5秒前
JamesPei应助傲娇的小天鹅采纳,获得10
5秒前
5秒前
5秒前
jiayi0114完成签到,获得积分10
5秒前
5秒前
小马甲应助赵鹏采纳,获得10
6秒前
6秒前
goodbai发布了新的文献求助10
7秒前
ChemGuo完成签到,获得积分10
7秒前
NNi发布了新的文献求助10
7秒前
自觉的书蝶完成签到,获得积分10
7秒前
尕辉完成签到,获得积分10
7秒前
林子发布了新的文献求助10
7秒前
8秒前
8秒前
Liang完成签到 ,获得积分10
8秒前
sacrum13发布了新的文献求助10
8秒前
雪白的臻发布了新的文献求助50
9秒前
9秒前
9秒前
9秒前
Ra1n完成签到,获得积分10
9秒前
研友_VZG7GZ应助WYN采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767