Development of Expert-Level Automated Detection of Epileptiform Discharges During Electroencephalogram Interpretation

脑电图 口译(哲学) 人工智能 癫痫 神经科学 心理学 医学 计算机科学 程序设计语言
作者
Jin Jing,Haoqi Sun,Jennifer A. Kim,Aline Herlopian,Ioannis Karakis,Marcus Ng,Jonathan J. Halford,Douglas Maus,Fonda Chan,Marjan Dolatshahi,Carlos Muniz,Catherine J. Chu,Valeria Saccà,Jay Pathmanathan,Wendong Ge,Justin Dauwels,Alice Lam,Andrew J. Cole,Sydney S. Cash,M. Brandon Westover
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:77 (1): 103-103 被引量:141
标识
DOI:10.1001/jamaneurol.2019.3485
摘要

Interictal epileptiform discharges (IEDs) in electroencephalograms (EEGs) are a biomarker of epilepsy, seizure risk, and clinical decline. However, there is a scarcity of experts qualified to interpret EEG results. Prior attempts to automate IED detection have been limited by small samples and have not demonstrated expert-level performance. There is a need for a validated automated method to detect IEDs with expert-level reliability.To develop and validate a computer algorithm with the ability to identify IEDs as reliably as experts and classify an EEG recording as containing IEDs vs no IEDs.A total of 9571 scalp EEG records with and without IEDs were used to train a deep neural network (SpikeNet) to perform IED detection. Independent training and testing data sets were generated from 13 262 IED candidates, independently annotated by 8 fellowship-trained clinical neurophysiologists, and 8520 EEG records containing no IEDs based on clinical EEG reports. Using the estimated spike probability, a classifier designating the whole EEG recording as positive or negative was also built.SpikeNet accuracy, sensitivity, and specificity compared with fellowship-trained neurophysiology experts for identifying IEDs and classifying EEGs as positive or negative or negative for IEDs. Statistical performance was assessed via calibration error and area under the receiver operating characteristic curve (AUC). All performance statistics were estimated using 10-fold cross-validation.SpikeNet surpassed both expert interpretation and an industry standard commercial IED detector, based on calibration error (SpikeNet, 0.041; 95% CI, 0.033-0.049; vs industry standard, 0.066; 95% CI, 0.060-0.078; vs experts, mean, 0.183; range, 0.081-0.364) and binary classification performance based on AUC (SpikeNet, 0.980; 95% CI, 0.977-0.984; vs industry standard, 0.882; 95% CI, 0.872-0.893). Whole EEG classification had a mean calibration error of 0.126 (range, 0.109-0.1444) vs experts (mean, 0.197; range, 0.099-0.372) and AUC of 0.847 (95% CI, 0.830-0.865).In this study, SpikeNet automatically detected IEDs and classified whole EEGs as IED-positive or IED-negative. This may be the first time an algorithm has been shown to exceed expert performance for IED detection in a representative sample of EEGs and may thus be a valuable tool for expedited review of EEGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
water应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
没烦恼完成签到,获得积分10
1秒前
哈哈发布了新的文献求助10
1秒前
玖Nine发布了新的文献求助10
2秒前
王子安应助cqnuly采纳,获得10
2秒前
sx发布了新的文献求助10
3秒前
丘比特应助sss采纳,获得10
3秒前
4秒前
科目三应助苞大米采纳,获得10
5秒前
6秒前
6秒前
adi发布了新的文献求助10
11秒前
13秒前
CodeCraft应助危机采纳,获得10
13秒前
木可完成签到,获得积分10
14秒前
善学以致用应助OKOK采纳,获得10
15秒前
17秒前
DianaRang发布了新的文献求助10
19秒前
19秒前
Brot_12发布了新的文献求助10
19秒前
不忘初心发布了新的文献求助10
20秒前
22秒前
朱光辉完成签到,获得积分10
24秒前
Li发布了新的文献求助10
24秒前
24秒前
脑洞疼应助江洋大盗采纳,获得10
25秒前
25秒前
27秒前
知性的幼晴完成签到,获得积分10
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167