Development of Expert-Level Automated Detection of Epileptiform Discharges During Electroencephalogram Interpretation

脑电图 口译(哲学) 人工智能 癫痫 神经科学 心理学 医学 计算机科学 程序设计语言
作者
Jin Jing,Haoqi Sun,Jennifer A. Kim,Aline Herlopian,Ioannis Karakis,Marcus Ng,Jonathan J. Halford,Douglas Maus,Fonda Chan,Marjan Dolatshahi,Carlos Muniz,Catherine J. Chu,Valeria Saccà,Jay Pathmanathan,Wendong Ge,Justin Dauwels,Alice Lam,Andrew J. Cole,Sydney S. Cash,M. Brandon Westover
出处
期刊:JAMA Neurology [American Medical Association]
卷期号:77 (1): 103-103 被引量:148
标识
DOI:10.1001/jamaneurol.2019.3485
摘要

Interictal epileptiform discharges (IEDs) in electroencephalograms (EEGs) are a biomarker of epilepsy, seizure risk, and clinical decline. However, there is a scarcity of experts qualified to interpret EEG results. Prior attempts to automate IED detection have been limited by small samples and have not demonstrated expert-level performance. There is a need for a validated automated method to detect IEDs with expert-level reliability.To develop and validate a computer algorithm with the ability to identify IEDs as reliably as experts and classify an EEG recording as containing IEDs vs no IEDs.A total of 9571 scalp EEG records with and without IEDs were used to train a deep neural network (SpikeNet) to perform IED detection. Independent training and testing data sets were generated from 13 262 IED candidates, independently annotated by 8 fellowship-trained clinical neurophysiologists, and 8520 EEG records containing no IEDs based on clinical EEG reports. Using the estimated spike probability, a classifier designating the whole EEG recording as positive or negative was also built.SpikeNet accuracy, sensitivity, and specificity compared with fellowship-trained neurophysiology experts for identifying IEDs and classifying EEGs as positive or negative or negative for IEDs. Statistical performance was assessed via calibration error and area under the receiver operating characteristic curve (AUC). All performance statistics were estimated using 10-fold cross-validation.SpikeNet surpassed both expert interpretation and an industry standard commercial IED detector, based on calibration error (SpikeNet, 0.041; 95% CI, 0.033-0.049; vs industry standard, 0.066; 95% CI, 0.060-0.078; vs experts, mean, 0.183; range, 0.081-0.364) and binary classification performance based on AUC (SpikeNet, 0.980; 95% CI, 0.977-0.984; vs industry standard, 0.882; 95% CI, 0.872-0.893). Whole EEG classification had a mean calibration error of 0.126 (range, 0.109-0.1444) vs experts (mean, 0.197; range, 0.099-0.372) and AUC of 0.847 (95% CI, 0.830-0.865).In this study, SpikeNet automatically detected IEDs and classified whole EEGs as IED-positive or IED-negative. This may be the first time an algorithm has been shown to exceed expert performance for IED detection in a representative sample of EEGs and may thus be a valuable tool for expedited review of EEGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizi发布了新的文献求助10
刚刚
刚刚
刚刚
GREENP完成签到,获得积分10
1秒前
梅倪发布了新的文献求助10
1秒前
善学以致用应助lmg采纳,获得10
1秒前
范欣雨发布了新的文献求助10
2秒前
M_完成签到,获得积分10
2秒前
3秒前
3秒前
alala发布了新的文献求助10
4秒前
LXR发布了新的文献求助10
4秒前
xiaobai完成签到,获得积分10
4秒前
脑洞疼应助乐观天磊采纳,获得10
4秒前
5秒前
qqqqy发布了新的文献求助10
5秒前
6秒前
fanfanzzz完成签到,获得积分10
6秒前
朽木发布了新的文献求助10
7秒前
7秒前
zhanghw完成签到,获得积分10
7秒前
EvaHo完成签到,获得积分10
7秒前
哭泣的小之完成签到,获得积分10
7秒前
冷傲半邪发布了新的文献求助30
8秒前
dktrrrr完成签到,获得积分10
8秒前
Manphie给nico666的求助进行了留言
8秒前
sjx1116完成签到 ,获得积分10
9秒前
小吴同学发布了新的文献求助10
10秒前
汤圆完成签到,获得积分10
10秒前
研友_Z1el0Z发布了新的文献求助10
11秒前
蒲黄妗子完成签到,获得积分10
11秒前
大碗完成签到,获得积分10
11秒前
在水一方应助忐忑的安筠采纳,获得10
12秒前
colddie发布了新的文献求助10
12秒前
13秒前
是雪雪吖完成签到,获得积分10
14秒前
14秒前
清脆靳完成签到,获得积分10
15秒前
zoe完成签到 ,获得积分10
15秒前
LXx发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329006
求助须知:如何正确求助?哪些是违规求助? 4468593
关于积分的说明 13905951
捐赠科研通 4361665
什么是DOI,文献DOI怎么找? 2395876
邀请新用户注册赠送积分活动 1389356
关于科研通互助平台的介绍 1360146