Identification of PGC-related ncRNAs and their relationship with the clinicopathological features of Gastric Cancer

鉴定(生物学) 癌症 生物 医学 计算生物学 生物信息学 癌症研究 病理 内科学 肿瘤科 植物
作者
Han-xi Ding,Ye-feng Wu,Qian Xu,Yuan Yuan
出处
期刊:Journal of Cancer [Ivyspring International Publisher]
卷期号:12 (14): 4389-4398 被引量:2
标识
DOI:10.7150/jca.47787
摘要

Pepsinogen C (PGC) is considered to be the final product of mature differentiated gastric mucosa.The expression level of PGC in gastric mucosa is clearly decreased upon the development of gastric cancer (GC).However, the mechanism behind PGC's down-regulation remains unclear and needs to be clarified.This study aimed to identify PGC-related ncRNAs with the potential to be PGC post-transcriptional regulators and to further explore the association between these ncRNAs and the clinicopathological parameters of GC.Bioinformatic software was used to predict miRNAs binding specifically to PGC and circRNAs binding specifically to these candidate miRNAs.Dual-luciferase reporter assay was performed to validate the completely complementary pairing of PGC and PGC-related ncRNAs.qRT-PCR was applied to determine the expression levels of PGC and PGC-related ncRNAs in GC tissue.hsa-let-7c was predicted to bind to the PGC gene, which was confirmed by dual-luciferase reporter assay.hsa_circ_ 0001483 and hsa_circ_0001324 were identified to bind to hsa-let-7c by bioinformatic analysis and dual-luciferase reporter assay.In addition, the hsa_circ_0001483/hsa_circ_0001324 -hsa-let-7c-PGC axis was confirmed in tissue by qRT-PCR.The expression level of hsa_circ_0001483 was correlated with peritumoral inflammatory cell infiltration and lymphatic metastasis.hsa_circ_0001483, hsa_circ_ 0001324, and let-7c were newly identified and validated as PGC-related ncRNAs and showed associations with the clinicopathological features of GC.The hsa_circ_0001483/hsa_circ_0001324-hsalet-7c-PGC axis in GC may account for the down-regulation of PGC in GC tissue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cu完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
标致的问晴完成签到,获得积分10
1秒前
1秒前
方硕发布了新的文献求助30
2秒前
杨小羊完成签到 ,获得积分10
2秒前
pluto应助热情迎彤采纳,获得10
2秒前
3秒前
3秒前
火星上云朵完成签到 ,获得积分10
3秒前
乐乐应助shimly0101xx采纳,获得10
4秒前
liushiyi发布了新的文献求助10
4秒前
小杨发布了新的文献求助10
4秒前
可爱的函函应助祝愿采纳,获得10
4秒前
陈醒醒完成签到,获得积分10
4秒前
炙热成仁发布了新的文献求助10
4秒前
xxcdnc完成签到,获得积分10
5秒前
酷酷山柳完成签到 ,获得积分10
5秒前
6秒前
小鬼完成签到,获得积分10
6秒前
6秒前
HM发布了新的文献求助10
6秒前
ding应助走马采纳,获得10
6秒前
柚子加冰完成签到,获得积分10
7秒前
研友_2484完成签到,获得积分10
7秒前
8秒前
8秒前
美丽的凌蝶完成签到,获得积分10
8秒前
牧瞻完成签到,获得积分10
8秒前
9秒前
Apple发布了新的文献求助30
9秒前
dashuaib完成签到,获得积分10
9秒前
9秒前
小鬼发布了新的文献求助10
10秒前
单薄的日记本完成签到,获得积分10
11秒前
希望天下0贩的0应助4645采纳,获得10
11秒前
minya完成签到,获得积分10
11秒前
孤独收割人完成签到,获得积分10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733849
求助须知:如何正确求助?哪些是违规求助? 3278067
关于积分的说明 10006761
捐赠科研通 2994206
什么是DOI,文献DOI怎么找? 1642969
邀请新用户注册赠送积分活动 780752
科研通“疑难数据库(出版商)”最低求助积分说明 749006