Association of multiple metals with lipid markers against different exposure profiles: A population-based cross-sectional study in China

血脂谱 化学 人口 线性回归 载脂蛋白B 血脂 内科学 胆固醇 医学 生物化学 环境卫生 计算机科学 机器学习 有机化学
作者
Zhaoyang Li,Yali Xu,Zhijun Huang,Yue Wei,Jian Hou,Tengfei Long,Fei Wang,Xu Cheng,Yanying Duan,Xiang Chen,Hong Yuan,Minxue Shen,Meian He
出处
期刊:Chemosphere [Elsevier]
卷期号:264: 128505-128505 被引量:47
标识
DOI:10.1016/j.chemosphere.2020.128505
摘要

We sought to evaluate whether essential and toxic metals are cross-sectionally related to blood lipid levels using data among adults from Shimen (n = 564) and Huayuan (n = 637), two counties with different exposure profiles in Hunan province of China. Traditional and grouped weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were performed to assess association between exposure to a mixture of 22 metals measured in urine or plasma, and lipid markers. Most of the exposure levels of metals were significantly higher in Shimen area than those in Huayuan area (all P-values < 0.001). Traditional WQS regression analyses revealed that the WQS index were both significantly associated with lipid markers in two areas, except for the HDL-C. Grouped WQS revealed that essential metals group showed significantly positive associations with lipid markers except for HDL-C in Huayuan area, while toxic metals group showed significantly negative associations except for HDL-C and LDL-C in Huayuan area. There were no significant joint effects, but potential non-linear relationships between metals mixture and TC or LDL-C levels were observed in BKMR analyses. Although consistent significantly associations of zinc and titanium with TG levels were found in both areas, the metals closely related to other lipid markers were varied by sites. Additionally, the BKMR analyses revealed an inverse U shaped association of iron with LDL-C levels and interaction effects of zinc and cadmium on LDL-C in Huayuan area. The relationship between metal exposure and blood lipid were not identical against different exposure profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助牛溪媛采纳,获得10
刚刚
刚刚
小蘑菇应助cruise采纳,获得10
刚刚
liu完成签到,获得积分10
刚刚
2秒前
2秒前
赘婿应助勒恩梁采纳,获得10
3秒前
坦率的语芙完成签到,获得积分10
3秒前
脑洞疼应助longer采纳,获得10
3秒前
caizhizhao完成签到,获得积分20
4秒前
cach完成签到,获得积分0
4秒前
4秒前
ssskong完成签到,获得积分10
5秒前
Xu完成签到,获得积分10
6秒前
明天发布了新的文献求助20
6秒前
CipherSage应助xvan采纳,获得10
6秒前
7秒前
fksci发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
阿庆完成签到,获得积分10
9秒前
Criminology34应助落后成仁采纳,获得10
9秒前
LMY完成签到,获得积分10
9秒前
11秒前
orixero应助wwwweer采纳,获得10
11秒前
12秒前
13秒前
诺贝尔候选人完成签到 ,获得积分10
13秒前
Youlu发布了新的文献求助10
14秒前
吃瓜完成签到,获得积分10
14秒前
14秒前
Mmmm发布了新的文献求助10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
tiptip应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
BowieHuang应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172