Association of multiple metals with lipid markers against different exposure profiles: A population-based cross-sectional study in China

血脂谱 化学 人口 线性回归 载脂蛋白B 血脂 内科学 胆固醇 医学 生物化学 环境卫生 计算机科学 机器学习 有机化学
作者
Zhaoyang Li,Yali Xu,Zhijun Huang,Yue Wei,Jian Hou,Tengfei Long,Fei Wang,Xu Cheng,Yanying Duan,Xiang Chen,Hong Yuan,Minxue Shen,Meian He
出处
期刊:Chemosphere [Elsevier]
卷期号:264: 128505-128505 被引量:47
标识
DOI:10.1016/j.chemosphere.2020.128505
摘要

We sought to evaluate whether essential and toxic metals are cross-sectionally related to blood lipid levels using data among adults from Shimen (n = 564) and Huayuan (n = 637), two counties with different exposure profiles in Hunan province of China. Traditional and grouped weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were performed to assess association between exposure to a mixture of 22 metals measured in urine or plasma, and lipid markers. Most of the exposure levels of metals were significantly higher in Shimen area than those in Huayuan area (all P-values < 0.001). Traditional WQS regression analyses revealed that the WQS index were both significantly associated with lipid markers in two areas, except for the HDL-C. Grouped WQS revealed that essential metals group showed significantly positive associations with lipid markers except for HDL-C in Huayuan area, while toxic metals group showed significantly negative associations except for HDL-C and LDL-C in Huayuan area. There were no significant joint effects, but potential non-linear relationships between metals mixture and TC or LDL-C levels were observed in BKMR analyses. Although consistent significantly associations of zinc and titanium with TG levels were found in both areas, the metals closely related to other lipid markers were varied by sites. Additionally, the BKMR analyses revealed an inverse U shaped association of iron with LDL-C levels and interaction effects of zinc and cadmium on LDL-C in Huayuan area. The relationship between metal exposure and blood lipid were not identical against different exposure profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠悠发布了新的文献求助30
刚刚
刚刚
xushanqi发布了新的文献求助10
刚刚
zxy发布了新的文献求助10
刚刚
NexusExplorer应助悦耳安白采纳,获得10
刚刚
1秒前
程大大大教授完成签到,获得积分10
1秒前
细腻语堂发布了新的文献求助10
1秒前
有魅力的桐完成签到,获得积分10
1秒前
凌爽发布了新的文献求助10
1秒前
所所应助水晶鞋小兔头采纳,获得10
2秒前
孤独悟空发布了新的文献求助30
2秒前
水土洼完成签到,获得积分10
2秒前
上官若男应助Islet采纳,获得10
2秒前
王王应助讨厌水煮蛋采纳,获得10
3秒前
卢莹发布了新的文献求助80
3秒前
彭于晏应助suyanjin采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
熠熠发布了新的文献求助10
5秒前
思源应助峥嵘采纳,获得10
7秒前
8秒前
FashionBoy应助悠悠采纳,获得10
9秒前
君子儒完成签到,获得积分10
10秒前
Ronnie发布了新的文献求助10
10秒前
华仔应助支妙采纳,获得10
10秒前
Owen应助chyang采纳,获得10
11秒前
搜集达人应助yy采纳,获得10
11秒前
娇气的幼南完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
薀九完成签到,获得积分10
14秒前
14秒前
15秒前
Ronnie完成签到,获得积分10
15秒前
细腻语堂完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778188
求助须知:如何正确求助?哪些是违规求助? 5639026
关于积分的说明 15448263
捐赠科研通 4910052
什么是DOI,文献DOI怎么找? 2642147
邀请新用户注册赠送积分活动 1590080
关于科研通互助平台的介绍 1544494