Association of multiple metals with lipid markers against different exposure profiles: A population-based cross-sectional study in China

血脂谱 化学 人口 线性回归 载脂蛋白B 血脂 内科学 胆固醇 医学 生物化学 环境卫生 计算机科学 机器学习 有机化学
作者
Zhaoyang Li,Yali Xu,Zhijun Huang,Yue Wei,Jian Hou,Tengfei Long,Wei Wang,Xu Cheng,Yanying Duan,Xiang Chen,Hong Yuan,Minxue Shen,Meian He
出处
期刊:Chemosphere [Elsevier]
卷期号:264: 128505-128505 被引量:38
标识
DOI:10.1016/j.chemosphere.2020.128505
摘要

We sought to evaluate whether essential and toxic metals are cross-sectionally related to blood lipid levels using data among adults from Shimen (n = 564) and Huayuan (n = 637), two counties with different exposure profiles in Hunan province of China. Traditional and grouped weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were performed to assess association between exposure to a mixture of 22 metals measured in urine or plasma, and lipid markers. Most of the exposure levels of metals were significantly higher in Shimen area than those in Huayuan area (all P-values < 0.001). Traditional WQS regression analyses revealed that the WQS index were both significantly associated with lipid markers in two areas, except for the HDL-C. Grouped WQS revealed that essential metals group showed significantly positive associations with lipid markers except for HDL-C in Huayuan area, while toxic metals group showed significantly negative associations except for HDL-C and LDL-C in Huayuan area. There were no significant joint effects, but potential non-linear relationships between metals mixture and TC or LDL-C levels were observed in BKMR analyses. Although consistent significantly associations of zinc and titanium with TG levels were found in both areas, the metals closely related to other lipid markers were varied by sites. Additionally, the BKMR analyses revealed an inverse U shaped association of iron with LDL-C levels and interaction effects of zinc and cadmium on LDL-C in Huayuan area. The relationship between metal exposure and blood lipid were not identical against different exposure profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助mufcyang采纳,获得10
刚刚
搜集达人应助聪明与摩羯采纳,获得10
1秒前
yuanzhilong发布了新的文献求助10
1秒前
酷炫的电源完成签到 ,获得积分10
2秒前
小马甲应助乐橙采纳,获得10
3秒前
菡一往完成签到 ,获得积分10
3秒前
3秒前
英俊的铭应助mw采纳,获得10
4秒前
荔枝发布了新的文献求助10
4秒前
机灵哈密瓜完成签到,获得积分10
5秒前
6秒前
大熊完成签到 ,获得积分10
7秒前
strelias发布了新的文献求助10
7秒前
infinity完成签到 ,获得积分10
8秒前
小王的科研小助手完成签到 ,获得积分10
10秒前
稞小弟发布了新的文献求助10
11秒前
11秒前
汉堡包应助迅速冥茗采纳,获得10
11秒前
张美超完成签到,获得积分10
12秒前
12秒前
缓慢小熊猫完成签到 ,获得积分10
13秒前
13秒前
顾矜应助荔枝采纳,获得10
13秒前
菡一往关注了科研通微信公众号
13秒前
14秒前
strelias完成签到,获得积分10
14秒前
Mercury发布了新的文献求助10
14秒前
wmuer完成签到 ,获得积分10
14秒前
xjcy应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
8R60d8应助科研通管家采纳,获得10
15秒前
闪闪发光完成签到,获得积分20
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503