亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multitask model for person re-identification and attribute recognition using semantic regions

计算机科学 人工智能 卷积神经网络 鉴定(生物学) 背景(考古学) 自然语言处理 模式识别(心理学) 任务(项目管理) 多任务学习 机器学习 判别式 特征(语言学)
作者
Andreas Specker,Arne Schumann,Jürgen Beyerer
标识
DOI:10.1117/12.2573981
摘要

In recent years, more and more video surveillance cameras are being used both in military and civilian applications. This trend results in large amounts of available image and video footage. An effective manual search and evaluation of this data is difficult due to the large data volume and limited human attention span. This is why automatic algorithms are required to aid in data analysis. A key task in this context is search for persons of interest, i.e., person re-identification. Based on a query image, re-identification methods retrieve further occurrences of the depicted person in large data volumes. The prevailing success of convolutional neural networks (CNNs) in computer vision did not spare person re-identification and has recently led to significant improvements. Current state-of-the-art approaches mostly rely on features extracted from CNNs trained with person images and corresponding identity labels. However, person re-identification still remains a challenging problem due to many task-specific influences such as, e.g., occlusions, incomplete body parts, background clutter, varying camera perspectives, and pose variation. Unlike conventional CNN features, descriptive person attributes represent higher-level semantic information that is more robust to many of these influences. Therefore, person re-identification can be improved by integrating attributes into the algorithms. In this work we investigate approaches for attribute-based person re-identification using deep learning methods with the goal of developing efficient models with the best possible re-identification accuracy. We show that best practices in person re-identification approaches can be transferred to the task of pedestrian attribute recognition to achieve strong baseline results for both tasks. Moreover, we show that leveraging information about semantic clothing and body regions during training of the networks improves the results further. Finally, we combine pedestrian attribute recognition and person re-identification models in a multi-task architecture to build our attribute-based person re-identification approach. We develop our attribute model on the large RAP dataset, which currently offers the largest available number of persons and attributes and thus allows for a differentiated analysis. The final combined attribute and re-identification model is trained on the Market-1501 dataset, which provides person identities and attribute annotations simultaneously. Our results show that baseline re-identification results are surpassed, thus indicating that complementary information from the two different tasks is leveraged.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慎二完成签到 ,获得积分10
刚刚
热心的白莲完成签到,获得积分10
7秒前
DY901004发布了新的文献求助10
9秒前
小邸应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
ding应助科研通管家采纳,获得10
14秒前
小邸应助科研通管家采纳,获得10
14秒前
小邸应助科研通管家采纳,获得10
14秒前
14秒前
小邸应助科研通管家采纳,获得10
14秒前
和谐雨竹完成签到,获得积分20
14秒前
Marshall完成签到 ,获得积分10
21秒前
bkagyin应助CC采纳,获得10
22秒前
23秒前
可爱的函函应助和谐雨竹采纳,获得10
25秒前
29秒前
阿治完成签到 ,获得积分10
43秒前
伯云发布了新的文献求助10
45秒前
狮子沟核聚变骡子完成签到 ,获得积分10
51秒前
白衣渡姜发布了新的文献求助10
51秒前
喏晨完成签到 ,获得积分10
55秒前
大方青烟完成签到,获得积分10
1分钟前
Jim发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小谢同学完成签到 ,获得积分10
1分钟前
yifei发布了新的文献求助10
1分钟前
1分钟前
白衣渡姜完成签到,获得积分10
1分钟前
wd发布了新的文献求助10
1分钟前
祁风完成签到 ,获得积分10
1分钟前
王饱饱完成签到 ,获得积分10
1分钟前
迷你的靖雁完成签到,获得积分10
1分钟前
1分钟前
李健完成签到,获得积分10
1分钟前
糖伯虎完成签到 ,获得积分10
1分钟前
乐乐应助wd采纳,获得10
1分钟前
1分钟前
周肆完成签到 ,获得积分10
1分钟前
余念安完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581559
求助须知:如何正确求助?哪些是违规求助? 3999491
关于积分的说明 12381352
捐赠科研通 3674182
什么是DOI,文献DOI怎么找? 2024857
邀请新用户注册赠送积分活动 1058733
科研通“疑难数据库(出版商)”最低求助积分说明 945497