A multitask model for person re-identification and attribute recognition using semantic regions

计算机科学 人工智能 卷积神经网络 鉴定(生物学) 背景(考古学) 自然语言处理 模式识别(心理学) 任务(项目管理) 多任务学习 机器学习 判别式 特征(语言学)
作者
Andreas Specker,Arne Schumann,Jürgen Beyerer
标识
DOI:10.1117/12.2573981
摘要

In recent years, more and more video surveillance cameras are being used both in military and civilian applications. This trend results in large amounts of available image and video footage. An effective manual search and evaluation of this data is difficult due to the large data volume and limited human attention span. This is why automatic algorithms are required to aid in data analysis. A key task in this context is search for persons of interest, i.e., person re-identification. Based on a query image, re-identification methods retrieve further occurrences of the depicted person in large data volumes. The prevailing success of convolutional neural networks (CNNs) in computer vision did not spare person re-identification and has recently led to significant improvements. Current state-of-the-art approaches mostly rely on features extracted from CNNs trained with person images and corresponding identity labels. However, person re-identification still remains a challenging problem due to many task-specific influences such as, e.g., occlusions, incomplete body parts, background clutter, varying camera perspectives, and pose variation. Unlike conventional CNN features, descriptive person attributes represent higher-level semantic information that is more robust to many of these influences. Therefore, person re-identification can be improved by integrating attributes into the algorithms. In this work we investigate approaches for attribute-based person re-identification using deep learning methods with the goal of developing efficient models with the best possible re-identification accuracy. We show that best practices in person re-identification approaches can be transferred to the task of pedestrian attribute recognition to achieve strong baseline results for both tasks. Moreover, we show that leveraging information about semantic clothing and body regions during training of the networks improves the results further. Finally, we combine pedestrian attribute recognition and person re-identification models in a multi-task architecture to build our attribute-based person re-identification approach. We develop our attribute model on the large RAP dataset, which currently offers the largest available number of persons and attributes and thus allows for a differentiated analysis. The final combined attribute and re-identification model is trained on the Market-1501 dataset, which provides person identities and attribute annotations simultaneously. Our results show that baseline re-identification results are surpassed, thus indicating that complementary information from the two different tasks is leveraged.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
mk发布了新的文献求助10
4秒前
4秒前
简单如容发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
快乐应助林小雨采纳,获得10
8秒前
tang完成签到,获得积分10
9秒前
尹天扬完成签到,获得积分10
9秒前
A灰机发布了新的文献求助10
10秒前
充电宝应助yzm788695采纳,获得10
11秒前
Lazarus_x完成签到,获得积分10
11秒前
没有鹿角的羊完成签到,获得积分10
11秒前
淡定的花生完成签到 ,获得积分10
11秒前
简单如容完成签到,获得积分10
12秒前
learn应助禹代秋采纳,获得10
12秒前
狗妹那塞完成签到,获得积分10
14秒前
安雨发布了新的文献求助10
15秒前
言言右完成签到,获得积分10
15秒前
柳树完成签到,获得积分10
17秒前
junzilan完成签到,获得积分10
19秒前
xiaoguoshuoshi完成签到,获得积分10
19秒前
香蕉擎发布了新的文献求助10
23秒前
希望天下0贩的0应助噜噜采纳,获得10
24秒前
领导范儿应助Ry采纳,获得10
25秒前
26秒前
26秒前
斯文钢笔发布了新的文献求助20
27秒前
28秒前
禹代秋完成签到,获得积分10
28秒前
胖头鱼发布了新的文献求助10
29秒前
搜集达人应助月亮不见了采纳,获得10
31秒前
31秒前
英俊的铭应助A灰机采纳,获得10
32秒前
清风~徐来完成签到 ,获得积分10
32秒前
夕荀发布了新的文献求助20
34秒前
漠之梦完成签到,获得积分10
34秒前
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162753
求助须知:如何正确求助?哪些是违规求助? 2813664
关于积分的说明 7901471
捐赠科研通 2473244
什么是DOI,文献DOI怎么找? 1316693
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175