光催化
催化作用
异质结
材料科学
热液循环
化学工程
制氢
纳米技术
光化学
化学
光电子学
有机化学
工程类
作者
Feihu Mu,Qiong Cai,Hao Hu,Jian Wang,Yun Wang,Shijian Zhou,Yan Kong
标识
DOI:10.1016/j.cej.2019.123352
摘要
To solve the problem of energy shortage and environmental pollution, the construction of properly designed photocatalysts is a promising method. Here, UiO-66-(COOH)2/ZnIn2S4 Z-scheme photocatalyst decorated with MoS2 nanosheets was designed and constructed as a novel 3D hierarchical structure via hydrothermal methods. In this particular 3D hierarchical structure, the UiO-66-(COOH)2 nanoparticles are decorated in the interweaving petal nanosheets of ZnIn2S4 microspheres, while the co-catalyst of MoS2 is folded at the edge of these interweaving petals. The excellent heterojunctions with highly exposed catalytic active sites are correspondingly built, and the close interfacial interaction between UiO-66-(COOH)2, MoS2 and ZnIn2S4 create a stage for fast transfer of photogenerated electrons, which are both effective for the photocatalytic reaction process. Also, the Z-scheme charge-transfer process improves the oxidizability and reducibility between UiO-66-(COOH)2 and ZnIn2S4. As a result, the optimized UiO-66-(COOH)2/MoS2/ZnIn2S4 photocatalyst exhibits excellent photocatalytic hydrogen production (18.794 mmol h−1 g−1) and reduction of Cr(VI) (0.06850 min−1) under simulated solar light irradiation, which are 15.3 and 6.7 times higher than that of bare ZnIn2S4, respectively, and also the prominent stability and excellent recyclability are obtained. This study provides new insights into the research on the Z-scheme system containing MOF components for growing energy and environmental demands.
科研通智能强力驱动
Strongly Powered by AbleSci AI