Efficient feature extraction model for validation performance improvement of duplicate bug report detection in software bug triage systems

计算机科学 特征提取 特征(语言学) 急诊分诊台 软件错误 软件 公制(单位) 数据挖掘 人工智能 软件回归 软件开发 软件质量 工程类 哲学 程序设计语言 急诊医学 医学 语言学 运营管理
作者
Behzad Soleimani Neysiani,Seyed Morteza Babamir,Masayoshi Aritsugi
出处
期刊:Information & Software Technology [Elsevier]
卷期号:126: 106344-106344 被引量:18
标识
DOI:10.1016/j.infsof.2020.106344
摘要

There are many duplicate bug reports in the semi-structured software repository of various software bug triage systems. The duplicate bug report detection (DBRD) process is a significant problem in software triage systems. The DBRD problem has many issues, such as efficient feature extraction to calculate similarities between bug reports accurately, building a high-performance duplicate detector model, and handling continuous real-time queries. Feature extraction is a technique that converts unstructured data to structured data. The main objective of this study is to improve the validation performance of DBRD using a feature extraction model. This research focuses on feature extraction to build a new general model containing all types of features. Moreover, it introduces a new feature extractor method to describe a new viewpoint of similarity between texts. The proposed method introduces new textual features based on the aggregation of term frequency and inverse document frequency of text fields of bug reports in uni-gram and bi-gram forms. Further, a new hybrid measurement metric is proposed for detecting efficient features, whereby it is used to evaluate the efficiency of all features, including the proposed ones. The validation performance of DBRD was compared for the proposed features and state-of-the-art features. To show the effectiveness of our model, we applied it and other related studies to DBRD of the Android, Eclipse, Mozilla, and Open Office datasets and compared the results. The comparisons showed that our proposed model achieved (i) approximately 2% improvement for accuracy and precision and more than 4.5% and 5.9% improvement for recall and F1-measure, respectively, by applying the linear regression (LR) and decision tree (DT) classifiers and (ii) a performance of 91%−99% (average ~97%) for the four metrics, by applying the DT classifier as the best classifier. Our proposed features improved the validation performance of DBRD concerning runtime performance. The pre-processing methods (primarily stemming) could improve the validation performance of DBRD slightly (up to 0.3%), but rule-based machine learning algorithms are more useful for the DBRD problem. The results showed that our proposed model is more effective both for the datasets for which state-of-the-art approaches were effective (i.e., Mozilla Firefox) and those for which state-of-the-art approaches were less effective (i.e., Android). The results also showed that the combination of all types of features could improve the validation performance of DBRD even for the LR classifier with less validation performance, which can be implemented easily for software bug triage systems. Without using the longest common subsequence (LCS) feature, which is effective but time-consuming, our proposed features could cover the effectiveness of LCS with lower time-complexity and runtime overhead. In addition, a statistical analysis shows that the results are reliable and can be generalized to other datasets or similar classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
futianyu完成签到 ,获得积分10
2秒前
7秒前
雪妮完成签到 ,获得积分10
7秒前
哈哈完成签到 ,获得积分10
13秒前
满眼星辰完成签到 ,获得积分10
17秒前
LL完成签到,获得积分10
20秒前
komisan完成签到 ,获得积分10
23秒前
shy完成签到,获得积分10
29秒前
Kevin完成签到,获得积分10
29秒前
善良起眸完成签到 ,获得积分10
30秒前
七月星河完成签到 ,获得积分10
35秒前
眼睛大迎波完成签到,获得积分10
35秒前
夏秋完成签到 ,获得积分10
36秒前
奋斗人雄完成签到,获得积分10
39秒前
刻苦的猕猴桃完成签到,获得积分10
40秒前
午后狂睡完成签到 ,获得积分10
41秒前
王灿灿应助Zhiyang Lu采纳,获得50
44秒前
大个应助刻苦的猕猴桃采纳,获得10
44秒前
huhu完成签到 ,获得积分10
45秒前
49秒前
领导范儿应助科研通管家采纳,获得10
49秒前
小马甲应助科研通管家采纳,获得10
49秒前
Fred Guan应助精灵少女采纳,获得10
51秒前
eternal_dreams完成签到 ,获得积分10
51秒前
小哈完成签到 ,获得积分10
54秒前
likw23完成签到 ,获得积分10
56秒前
58秒前
义气凡阳发布了新的文献求助10
1分钟前
精灵少女完成签到,获得积分10
1分钟前
畅快城完成签到,获得积分10
1分钟前
Jessie完成签到 ,获得积分10
1分钟前
安详向薇完成签到,获得积分10
1分钟前
粗心的惜梦完成签到 ,获得积分10
1分钟前
yk完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
兔子不爱吃胡萝卜完成签到,获得积分10
1分钟前
dl完成签到,获得积分10
1分钟前
忧郁的寻冬完成签到,获得积分10
1分钟前
妖哥完成签到,获得积分10
1分钟前
叮叮当当完成签到,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139665
求助须知:如何正确求助?哪些是违规求助? 2790602
关于积分的说明 7795670
捐赠科研通 2447017
什么是DOI,文献DOI怎么找? 1301553
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176