Efficient feature extraction model for validation performance improvement of duplicate bug report detection in software bug triage systems

计算机科学 特征提取 特征(语言学) 急诊分诊台 软件错误 软件 公制(单位) 数据挖掘 人工智能 软件回归 软件开发 软件质量 工程类 医学 急诊医学 语言学 哲学 程序设计语言 运营管理
作者
Behzad Soleimani Neysiani,Seyed Morteza Babamir,Masayoshi Aritsugi
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:126: 106344-106344 被引量:18
标识
DOI:10.1016/j.infsof.2020.106344
摘要

There are many duplicate bug reports in the semi-structured software repository of various software bug triage systems. The duplicate bug report detection (DBRD) process is a significant problem in software triage systems. The DBRD problem has many issues, such as efficient feature extraction to calculate similarities between bug reports accurately, building a high-performance duplicate detector model, and handling continuous real-time queries. Feature extraction is a technique that converts unstructured data to structured data. The main objective of this study is to improve the validation performance of DBRD using a feature extraction model. This research focuses on feature extraction to build a new general model containing all types of features. Moreover, it introduces a new feature extractor method to describe a new viewpoint of similarity between texts. The proposed method introduces new textual features based on the aggregation of term frequency and inverse document frequency of text fields of bug reports in uni-gram and bi-gram forms. Further, a new hybrid measurement metric is proposed for detecting efficient features, whereby it is used to evaluate the efficiency of all features, including the proposed ones. The validation performance of DBRD was compared for the proposed features and state-of-the-art features. To show the effectiveness of our model, we applied it and other related studies to DBRD of the Android, Eclipse, Mozilla, and Open Office datasets and compared the results. The comparisons showed that our proposed model achieved (i) approximately 2% improvement for accuracy and precision and more than 4.5% and 5.9% improvement for recall and F1-measure, respectively, by applying the linear regression (LR) and decision tree (DT) classifiers and (ii) a performance of 91%−99% (average ~97%) for the four metrics, by applying the DT classifier as the best classifier. Our proposed features improved the validation performance of DBRD concerning runtime performance. The pre-processing methods (primarily stemming) could improve the validation performance of DBRD slightly (up to 0.3%), but rule-based machine learning algorithms are more useful for the DBRD problem. The results showed that our proposed model is more effective both for the datasets for which state-of-the-art approaches were effective (i.e., Mozilla Firefox) and those for which state-of-the-art approaches were less effective (i.e., Android). The results also showed that the combination of all types of features could improve the validation performance of DBRD even for the LR classifier with less validation performance, which can be implemented easily for software bug triage systems. Without using the longest common subsequence (LCS) feature, which is effective but time-consuming, our proposed features could cover the effectiveness of LCS with lower time-complexity and runtime overhead. In addition, a statistical analysis shows that the results are reliable and can be generalized to other datasets or similar classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助小王采纳,获得10
刚刚
伶俐的秋白完成签到,获得积分10
刚刚
刚刚
思源应助维生素采纳,获得10
1秒前
1秒前
完美梨愁发布了新的文献求助10
4秒前
4秒前
5秒前
英俊的铭应助白兰鸽采纳,获得10
7秒前
布洛小芬完成签到 ,获得积分20
8秒前
whatever应助shark采纳,获得20
8秒前
默默雪旋完成签到 ,获得积分10
8秒前
牧紫菱完成签到,获得积分10
9秒前
10秒前
11秒前
小王发布了新的文献求助10
11秒前
11秒前
Eric完成签到,获得积分10
12秒前
开朗的山彤完成签到,获得积分10
12秒前
维生素完成签到,获得积分10
12秒前
时林完成签到,获得积分10
12秒前
傻瓜完成签到 ,获得积分10
13秒前
14秒前
大观天下发布了新的文献求助10
16秒前
忽远忽近的她完成签到 ,获得积分10
16秒前
维生素发布了新的文献求助10
17秒前
butterfly发布了新的文献求助10
19秒前
豆豆完成签到 ,获得积分10
20秒前
范先生完成签到,获得积分10
23秒前
2222222完成签到,获得积分10
23秒前
Hello应助bulingbuling采纳,获得10
23秒前
蜡笔小新完成签到,获得积分10
26秒前
希望天下0贩的0应助小王采纳,获得10
26秒前
赘婿应助lh采纳,获得10
27秒前
27秒前
科研通AI2S应助butterfly采纳,获得10
28秒前
大模型应助butterfly采纳,获得10
28秒前
30秒前
做个梦给你完成签到,获得积分10
30秒前
学霸宇大王完成签到 ,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029