Model based strategies towards protein A resin lifetime optimization and supervision

稳健性(进化) 化学 浸出(土壤学) 产量(工程) 色谱法 传质 工艺工程 生物系统 环境科学 材料科学 复合材料 工程类 土壤科学 土壤水分 基因 生物 生物化学
作者
Fabian Feidl,Martin F. Luna,Matevz Podobnik,Sebastian Vogg,James Angelo,Kevin Potter,Elenore Wiggin,Xuankuo Xu,Sanchayita Ghose,Zheng Jian Li,Massimo Morbidelli,Alessandro Butté
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1625: 461261-461261 被引量:19
标识
DOI:10.1016/j.chroma.2020.461261
摘要

The high cost of protein A resins drives the biopharmaceutical industry to maximize its lifetime, which is limited by several processes, usually referred to as resin aging. In this work, two model based strategies are presented, aiming to control and improve the resin lifetime. The first approach, purely statistical, enables qualitative monitoring of the column state and prediction of column performance indicators (e.g. yield, purity and dynamic binding capacity) from chromatographic on-line data (e.g. UV signal). The second one, referred to as hybrid modeling, is based on a lumped kinetic model, which includes two aging parameters fitted on several resin cycling experimental campaigns with varying cleaning procedures (CP). The first aging parameter accounts for binding capacity deterioration (caused by ligand degradation, leaching, and pore occlusion), while the second accounts for a decreased mass transfer rate (mainly caused by fouling). The hybrid model provides important insights into the prevailing aging mechanism as a function of the different CPs. In addition, it can be applied to model based CP optimization and yield forecasting with the capability of state estimation corrections based on on-line process information. Both approaches show promising results, which could help to significantly extend the resin lifetime. This comes along with increased understanding, reduced experimental effort, decreased cost of goods, and improved process robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ty发布了新的文献求助10
1秒前
JamesPei应助飘逸萍采纳,获得10
1秒前
1秒前
yy发布了新的文献求助10
1秒前
蓝天应助怕黑的飞柏采纳,获得10
1秒前
A29964095完成签到 ,获得积分10
2秒前
务实小夏完成签到,获得积分10
2秒前
趣多多发布了新的文献求助10
2秒前
慕青应助孤独如曼采纳,获得10
4秒前
蛋蛋完成签到 ,获得积分10
4秒前
YZQ发布了新的文献求助10
5秒前
6秒前
丘比特应助he采纳,获得10
6秒前
mdalmahadi发布了新的文献求助10
7秒前
fade完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
M_发布了新的文献求助10
12秒前
13秒前
吴迪发布了新的文献求助10
15秒前
所所应助科研通管家采纳,获得10
17秒前
Owen应助晚风采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
17秒前
李健应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729996
求助须知:如何正确求助?哪些是违规求助? 5321270
关于积分的说明 15317857
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619577
邀请新用户注册赠送积分活动 1569041
关于科研通互助平台的介绍 1525657