Model based strategies towards protein A resin lifetime optimization and supervision

稳健性(进化) 化学 浸出(土壤学) 产量(工程) 色谱法 传质 工艺工程 生物系统 环境科学 材料科学 复合材料 工程类 土壤科学 土壤水分 基因 生物 生物化学
作者
Fabian Feidl,Martin F. Luna,Matevz Podobnik,Sebastian Vogg,James Angelo,Kevin Potter,Elenore Wiggin,Xuankuo Xu,Sanchayita Ghose,Zheng Jian Li,Massimo Morbidelli,Alessandro Butté
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1625: 461261-461261 被引量:16
标识
DOI:10.1016/j.chroma.2020.461261
摘要

The high cost of protein A resins drives the biopharmaceutical industry to maximize its lifetime, which is limited by several processes, usually referred to as resin aging. In this work, two model based strategies are presented, aiming to control and improve the resin lifetime. The first approach, purely statistical, enables qualitative monitoring of the column state and prediction of column performance indicators (e.g. yield, purity and dynamic binding capacity) from chromatographic on-line data (e.g. UV signal). The second one, referred to as hybrid modeling, is based on a lumped kinetic model, which includes two aging parameters fitted on several resin cycling experimental campaigns with varying cleaning procedures (CP). The first aging parameter accounts for binding capacity deterioration (caused by ligand degradation, leaching, and pore occlusion), while the second accounts for a decreased mass transfer rate (mainly caused by fouling). The hybrid model provides important insights into the prevailing aging mechanism as a function of the different CPs. In addition, it can be applied to model based CP optimization and yield forecasting with the capability of state estimation corrections based on on-line process information. Both approaches show promising results, which could help to significantly extend the resin lifetime. This comes along with increased understanding, reduced experimental effort, decreased cost of goods, and improved process robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文忉嫣完成签到,获得积分10
刚刚
刚刚
1秒前
落后秋柳完成签到,获得积分20
1秒前
Akim应助zz采纳,获得10
1秒前
2秒前
三九发布了新的文献求助10
3秒前
科研通AI5应助czq采纳,获得30
3秒前
4秒前
4秒前
4秒前
坦率的松完成签到,获得积分10
4秒前
传奇3应助贤惠的正豪采纳,获得10
5秒前
111发布了新的文献求助10
5秒前
三寒鸦完成签到,获得积分10
5秒前
小木棉发布了新的文献求助10
5秒前
5秒前
少年郎完成签到,获得积分20
6秒前
CipherSage应助123lura采纳,获得10
6秒前
七七完成签到,获得积分10
6秒前
科研通AI2S应助小余采纳,获得10
6秒前
苹果骑士完成签到,获得积分10
6秒前
6秒前
shi hui应助jbhb采纳,获得10
7秒前
7秒前
7秒前
JUSTs0so发布了新的文献求助10
7秒前
长夜变清早完成签到,获得积分10
8秒前
9秒前
9秒前
otaro发布了新的文献求助10
10秒前
yinbin完成签到,获得积分10
10秒前
10秒前
独木舟发布了新的文献求助10
10秒前
白衣未央发布了新的文献求助10
10秒前
脑洞疼应助现实的曼荷采纳,获得10
12秒前
12秒前
轩辕德地发布了新的文献求助10
12秒前
三九完成签到,获得积分10
13秒前
orixero应助少年郎采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762