Mapping the space of chemical reactions using attention-based neural networks

计算机科学 化学空间 聚类分析 试剂 化学反应 人工神经网络 人工智能 班级(哲学) 背景(考古学) 化学 有机化学 生物化学 药物发现 生物 古生物学
作者
Philippe Schwaller,Daniel Probst,Alain C. Vaucher,Vishnu H Nair,David Kreutter,Teodoro Laino,Jean‐Louis Reymond
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (2): 144-152 被引量:205
标识
DOI:10.1038/s42256-020-00284-w
摘要

Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms. Reaction classes facilitate the communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task. It requires identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction centre and the distinction between reactants and reagents. Here, we show that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints that capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and similarity searching. Organic chemical reactions can be divided into classes that allow chemists to use the knowledge they have about optimal conditions for specific reactions in the context of other reactions of similar type. Schwaller et al. present here an efficient method based on transformer neural networks that learns a chemical space in which reactions of a similar class are grouped together.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CAOHOU应助一品红采纳,获得10
刚刚
搜集达人应助一品红采纳,获得10
1秒前
1秒前
彭0731发布了新的文献求助10
2秒前
2秒前
大模型应助灰底爆米花采纳,获得10
4秒前
5秒前
6秒前
7秒前
Jager.Z发布了新的文献求助10
7秒前
snow发布了新的文献求助10
9秒前
YN3585发布了新的文献求助10
10秒前
haha发布了新的文献求助10
10秒前
桐桐应助搜第一采纳,获得10
11秒前
www发布了新的文献求助10
12秒前
追光鱼完成签到,获得积分10
14秒前
阳光的玉米完成签到,获得积分10
15秒前
16秒前
Damocles完成签到,获得积分10
16秒前
李锐完成签到,获得积分10
17秒前
17秒前
18秒前
嘴巴张大一点完成签到,获得积分20
19秒前
22秒前
22秒前
22秒前
小天应助Li采纳,获得30
22秒前
MXene应助MOMO采纳,获得20
23秒前
暖小阳发布了新的文献求助10
23秒前
NexusExplorer应助YN3585采纳,获得10
24秒前
24秒前
wq完成签到,获得积分20
25秒前
28秒前
CodeCraft应助嘴巴张大一点采纳,获得10
28秒前
snow完成签到,获得积分10
29秒前
冷静凡天应助温柔靖巧采纳,获得10
29秒前
30秒前
CodeCraft应助haha采纳,获得20
31秒前
李健的小迷弟应助毅诚菌采纳,获得10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962882
求助须知:如何正确求助?哪些是违规求助? 3508809
关于积分的说明 11143356
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579