Mapping the space of chemical reactions using attention-based neural networks

计算机科学 化学空间 聚类分析 试剂 化学反应 人工神经网络 人工智能 班级(哲学) 背景(考古学) 化学 有机化学 生物化学 药物发现 生物 古生物学
作者
Philippe Schwaller,Daniel Probst,Alain C. Vaucher,Vishnu H Nair,David Kreutter,Teodoro Laino,Jean‐Louis Reymond
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (2): 144-152 被引量:205
标识
DOI:10.1038/s42256-020-00284-w
摘要

Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms. Reaction classes facilitate the communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task. It requires identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction centre and the distinction between reactants and reagents. Here, we show that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints that capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and similarity searching. Organic chemical reactions can be divided into classes that allow chemists to use the knowledge they have about optimal conditions for specific reactions in the context of other reactions of similar type. Schwaller et al. present here an efficient method based on transformer neural networks that learns a chemical space in which reactions of a similar class are grouped together.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助雷桑采纳,获得10
刚刚
少吃顿饭并不难完成签到 ,获得积分10
1秒前
珠珠发布了新的文献求助10
1秒前
1秒前
刘三哥完成签到 ,获得积分10
2秒前
隐形曼青应助leederay采纳,获得10
3秒前
上官若男应助to_ooooo采纳,获得10
3秒前
海阔天空发布了新的文献求助10
4秒前
顺心羊完成签到,获得积分10
4秒前
科研_小白完成签到,获得积分10
4秒前
XJTU_jyh完成签到,获得积分10
5秒前
TheaGao完成签到 ,获得积分10
5秒前
不是省油的灯完成签到 ,获得积分10
7秒前
9秒前
9秒前
bububu完成签到,获得积分10
10秒前
nanaki完成签到,获得积分10
10秒前
11秒前
小蘑菇应助lin采纳,获得10
12秒前
12秒前
13秒前
czcz发布了新的文献求助10
13秒前
Sean完成签到 ,获得积分10
16秒前
雷桑发布了新的文献求助10
16秒前
窗户上的喵咪很无聊完成签到 ,获得积分10
17秒前
Saint完成签到,获得积分10
18秒前
18秒前
零点起步完成签到,获得积分10
19秒前
认真丹亦完成签到 ,获得积分10
20秒前
时光完成签到,获得积分10
21秒前
22秒前
22秒前
科目三应助范先生采纳,获得10
22秒前
23秒前
神奇的海螺完成签到,获得积分10
23秒前
dong东包发布了新的文献求助10
23秒前
23秒前
czcz完成签到,获得积分10
24秒前
活泼学生完成签到 ,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066