亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mapping the space of chemical reactions using attention-based neural networks

计算机科学 化学空间 聚类分析 试剂 化学反应 人工神经网络 人工智能 班级(哲学) 背景(考古学) 化学 有机化学 生物化学 药物发现 生物 古生物学
作者
Philippe Schwaller,Daniel Probst,Alain C. Vaucher,Vishnu H Nair,David Kreutter,Teodoro Laino,Jean‐Louis Reymond
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (2): 144-152 被引量:232
标识
DOI:10.1038/s42256-020-00284-w
摘要

Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms. Reaction classes facilitate the communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task. It requires identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction centre and the distinction between reactants and reagents. Here, we show that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints that capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and similarity searching. Organic chemical reactions can be divided into classes that allow chemists to use the knowledge they have about optimal conditions for specific reactions in the context of other reactions of similar type. Schwaller et al. present here an efficient method based on transformer neural networks that learns a chemical space in which reactions of a similar class are grouped together.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yini应助科研通管家采纳,获得30
刚刚
Yini应助科研通管家采纳,获得30
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
9秒前
dddjs发布了新的文献求助10
13秒前
dddjs完成签到,获得积分10
23秒前
27秒前
hihi完成签到,获得积分10
48秒前
Innogen发布了新的文献求助10
1分钟前
Innogen完成签到,获得积分10
1分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Everything完成签到,获得积分10
2分钟前
3分钟前
3分钟前
4分钟前
Yikao完成签到 ,获得积分10
5分钟前
ZIJUNZHAO完成签到 ,获得积分10
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
总是很简单完成签到 ,获得积分10
6分钟前
Ykaor完成签到 ,获得积分10
6分钟前
古铜完成签到 ,获得积分10
6分钟前
6分钟前
乐正文涛发布了新的文献求助10
6分钟前
ajing完成签到,获得积分10
6分钟前
QYQ完成签到 ,获得积分10
6分钟前
msk完成签到 ,获得积分10
7分钟前
乐正怡完成签到 ,获得积分10
7分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
FMHChan完成签到,获得积分10
8分钟前
cy0824完成签到 ,获得积分10
9分钟前
wodetaiyangLLL完成签到 ,获得积分10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
10分钟前
铭铭完成签到 ,获得积分10
10分钟前
FashionBoy应助科研通管家采纳,获得10
12分钟前
shhoing应助科研通管家采纳,获得10
12分钟前
科研通AI6应助科研通管家采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557