Mapping the space of chemical reactions using attention-based neural networks

计算机科学 化学空间 聚类分析 试剂 化学反应 人工神经网络 人工智能 班级(哲学) 背景(考古学) 化学 有机化学 生物化学 药物发现 古生物学 生物
作者
Philippe Schwaller,Daniel Probst,Alain C. Vaucher,Vishnu H Nair,David Kreutter,Teodoro Laino,Jean‐Louis Reymond
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (2): 144-152 被引量:232
标识
DOI:10.1038/s42256-020-00284-w
摘要

Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms. Reaction classes facilitate the communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task. It requires identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction centre and the distinction between reactants and reagents. Here, we show that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints that capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and similarity searching. Organic chemical reactions can be divided into classes that allow chemists to use the knowledge they have about optimal conditions for specific reactions in the context of other reactions of similar type. Schwaller et al. present here an efficient method based on transformer neural networks that learns a chemical space in which reactions of a similar class are grouped together.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助下雨的颜色采纳,获得10
1秒前
2秒前
3秒前
gomm完成签到,获得积分10
4秒前
4秒前
5秒前
立麦完成签到,获得积分10
6秒前
脑洞疼应助旺仔小馒头采纳,获得10
7秒前
Joy完成签到,获得积分10
7秒前
乐观太阳发布了新的文献求助10
7秒前
狂奔的蜗牛完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助20
8秒前
发的风格发布了新的文献求助10
8秒前
9秒前
10秒前
浮游应助耍酷便当采纳,获得10
10秒前
11秒前
闪闪完成签到 ,获得积分10
11秒前
14秒前
15秒前
梨花月发布了新的文献求助10
16秒前
llm发布了新的文献求助10
16秒前
16秒前
bubu完成签到,获得积分10
16秒前
阿鑫完成签到 ,获得积分10
17秒前
18秒前
19秒前
19秒前
21秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
不安青牛应助发的风格采纳,获得10
26秒前
刘钱美子完成签到,获得积分10
26秒前
27秒前
经法完成签到,获得积分10
27秒前
科研通AI5应助smile采纳,获得10
29秒前
壳壳完成签到 ,获得积分10
31秒前
芋圆波波完成签到,获得积分10
31秒前
chiech发布了新的文献求助10
32秒前
34秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133624
求助须知:如何正确求助?哪些是违规求助? 4334712
关于积分的说明 13504473
捐赠科研通 4171760
什么是DOI,文献DOI怎么找? 2287273
邀请新用户注册赠送积分活动 1288216
关于科研通互助平台的介绍 1229072