Mapping the space of chemical reactions using attention-based neural networks

计算机科学 化学空间 聚类分析 试剂 化学反应 人工神经网络 人工智能 班级(哲学) 背景(考古学) 化学 有机化学 生物化学 药物发现 生物 古生物学
作者
Philippe Schwaller,Daniel Probst,Alain C. Vaucher,Vishnu H Nair,David Kreutter,Teodoro Laino,Jean‐Louis Reymond
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (2): 144-152 被引量:232
标识
DOI:10.1038/s42256-020-00284-w
摘要

Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms. Reaction classes facilitate the communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task. It requires identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction centre and the distinction between reactants and reagents. Here, we show that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints that capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and similarity searching. Organic chemical reactions can be divided into classes that allow chemists to use the knowledge they have about optimal conditions for specific reactions in the context of other reactions of similar type. Schwaller et al. present here an efficient method based on transformer neural networks that learns a chemical space in which reactions of a similar class are grouped together.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲈鱼完成签到,获得积分10
刚刚
磨人的老妖精完成签到,获得积分10
1秒前
火火完成签到,获得积分10
1秒前
yy完成签到,获得积分10
1秒前
pyrene完成签到 ,获得积分10
2秒前
公冶菲鹰发布了新的文献求助10
2秒前
热热完成签到,获得积分10
2秒前
zzz完成签到 ,获得积分10
2秒前
Jared应助黎黎采纳,获得10
3秒前
3秒前
3秒前
斯文败类应助XXXXX采纳,获得10
3秒前
阿芜完成签到,获得积分10
4秒前
LV发布了新的文献求助10
4秒前
qiuxiali123发布了新的文献求助10
4秒前
4秒前
CodeCraft应助miao采纳,获得10
4秒前
4秒前
LSW完成签到 ,获得积分10
5秒前
顾矜应助IF采纳,获得30
6秒前
咸鱼咸完成签到,获得积分10
6秒前
Kauio发布了新的文献求助10
6秒前
幸运鹅47完成签到,获得积分10
6秒前
orixero应助niagvbjkhsdfvc采纳,获得10
6秒前
hanyahui完成签到,获得积分10
7秒前
eliot完成签到,获得积分10
7秒前
7秒前
Zhao_Kai发布了新的文献求助10
7秒前
爆米花应助而风不止采纳,获得10
7秒前
坚强的紫菜完成签到,获得积分10
7秒前
熊风发布了新的文献求助10
8秒前
核桃完成签到,获得积分10
8秒前
see完成签到,获得积分10
8秒前
栀初完成签到,获得积分10
8秒前
LT发布了新的文献求助10
9秒前
9秒前
10秒前
热心市民余先生完成签到,获得积分10
10秒前
乐乐应助夕荀采纳,获得10
11秒前
无限小霜完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005