Mapping the space of chemical reactions using attention-based neural networks

计算机科学 化学空间 聚类分析 试剂 化学反应 人工神经网络 人工智能 班级(哲学) 背景(考古学) 化学 有机化学 生物化学 药物发现 生物 古生物学
作者
Philippe Schwaller,Daniel Probst,Alain C. Vaucher,Vishnu H Nair,David Kreutter,Teodoro Laino,Jean‐Louis Reymond
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (2): 144-152 被引量:232
标识
DOI:10.1038/s42256-020-00284-w
摘要

Organic reactions are usually assigned to classes containing reactions with similar reagents and mechanisms. Reaction classes facilitate the communication of complex concepts and efficient navigation through chemical reaction space. However, the classification process is a tedious task. It requires identification of the corresponding reaction class template via annotation of the number of molecules in the reactions, the reaction centre and the distinction between reactants and reagents. Here, we show that transformer-based models can infer reaction classes from non-annotated, simple text-based representations of chemical reactions. Our best model reaches a classification accuracy of 98.2%. We also show that the learned representations can be used as reaction fingerprints that capture fine-grained differences between reaction classes better than traditional reaction fingerprints. The insights into chemical reaction space enabled by our learned fingerprints are illustrated by an interactive reaction atlas providing visual clustering and similarity searching. Organic chemical reactions can be divided into classes that allow chemists to use the knowledge they have about optimal conditions for specific reactions in the context of other reactions of similar type. Schwaller et al. present here an efficient method based on transformer neural networks that learns a chemical space in which reactions of a similar class are grouped together.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
煜清清发布了新的文献求助10
1秒前
许源智啊发布了新的文献求助10
1秒前
1秒前
农夫三拳完成签到,获得积分10
2秒前
CodeCraft应助水门采纳,获得10
2秒前
科研通AI6应助叉烧饭采纳,获得10
2秒前
科研通AI6应助antarctica采纳,获得10
3秒前
3秒前
淀粉发布了新的文献求助10
3秒前
JuPP完成签到,获得积分10
4秒前
科目三应助脱壳金蝉采纳,获得10
4秒前
不止完成签到,获得积分10
4秒前
完美世界应助朴素的项链采纳,获得10
4秒前
4秒前
天天快乐应助xxxxxxx采纳,获得10
5秒前
华仔应助七田皿采纳,获得10
5秒前
大个应助帅哥采纳,获得10
5秒前
领导范儿应助可靠板栗采纳,获得10
5秒前
6秒前
6秒前
xw完成签到,获得积分10
6秒前
碑海北发布了新的文献求助10
6秒前
7秒前
7秒前
stellachen完成签到,获得积分10
7秒前
樱sky完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
酷酷纸飞机完成签到,获得积分10
8秒前
8秒前
baiyuecheng完成签到,获得积分10
9秒前
许源智啊完成签到,获得积分10
9秒前
9秒前
一次性过完成签到,获得积分10
10秒前
wanci应助细腻的书雁采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594