Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design

化学空间 密度泛函理论 过渡金属 化学 计算机科学 Atom(片上系统) 计算化学 空格(标点符号) 纳米技术 材料科学 药物发现 催化作用 生物化学 操作系统 嵌入式系统
作者
Jon Paul Janet,Chenru Duan,Aditya Nandy,Fang Liu,Heather J. Kulik
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (3): 532-545 被引量:49
标识
DOI:10.1021/acs.accounts.0c00686
摘要

ConspectusThe variability of chemical bonding in open-shell transition-metal complexes not only motivates their study as functional materials and catalysts but also challenges conventional computational modeling tools. Here, tailoring ligand chemistry can alter preferred spin or oxidation states as well as electronic structure properties and reactivity, creating vast regions of chemical space to explore when designing new materials atom by atom. Although first-principles density functional theory (DFT) remains the workhorse of computational chemistry in mechanism deduction and property prediction, it is of limited use here. DFT is both far too computationally costly for widespread exploration of transition-metal chemical space and also prone to inaccuracies that limit its predictive performance for localized d electrons in transition-metal complexes. These challenges starkly contrast with the well-trodden regions of small-organic-molecule chemical space, where the analytical forms of molecular mechanics force fields and semiempirical theories have for decades accelerated the discovery of new molecules, accurate DFT functional performance has been demonstrated, and gold-standard methods from correlated wavefunction theory can predict experimental results to chemical accuracy.The combined promise of transition-metal chemical space exploration and lack of established tools has mandated a distinct approach. In this Account, we outline the path we charted in exploration of transition-metal chemical space starting from the first machine learning (ML) models (i.e., artificial neural network and kernel ridge regression) and representations for the prediction of open-shell transition-metal complex properties. The distinct importance of the immediate coordination environment of the metal center as well as the lack of low-level methods to accurately predict structural properties in this coordination environment first motivated and then benefited from these ML models and representations. Once developed, the recipe for prediction of geometric, spin state, and redox potential properties was straightforwardly extended to a diverse range of other properties, including in catalysis, computational "feasibility", and the gas separation properties of periodic metal–organic frameworks. Interpretation of selected features most important for model prediction revealed new ways to encapsulate design rules and confirmed that models were robustly mapping essential structure–property relationships. Encountering the special challenge of ensuring that good model performance could generalize to new discovery targets motivated investigation of how to best carry out model uncertainty quantification. Distance-based approaches, whether in model latent space or in carefully engineered feature space, provided intuitive measures of the domain of applicability. With all of these pieces together, ML can be harnessed as an engine to tackle the large-scale exploration of transition-metal chemical space needed to satisfy multiple objectives using efficient global optimization methods. In practical terms, bringing these artificial intelligence tools to bear on the problems of transition-metal chemical space exploration has resulted in ML-model assessments of large, multimillion compound spaces in minutes and validated new design leads in weeks instead of decades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysc发布了新的文献求助10
刚刚
香蕉觅云应助MingqingFang采纳,获得10
刚刚
欣喜若灵发布了新的文献求助10
刚刚
2秒前
3秒前
3秒前
Garry应助科研通管家采纳,获得10
3秒前
一百二十一吨完成签到,获得积分10
3秒前
qin希望应助科研通管家采纳,获得10
3秒前
樱桃猴子应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得30
4秒前
4秒前
qin希望应助科研通管家采纳,获得10
4秒前
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
qin希望应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
樱桃猴子应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
gdh发布了新的文献求助10
5秒前
ysc完成签到,获得积分10
6秒前
NZH发布了新的文献求助10
6秒前
7秒前
六六发布了新的文献求助10
7秒前
April完成签到,获得积分10
7秒前
彭于晏应助自然的致远采纳,获得10
7秒前
别皱眉发布了新的文献求助10
8秒前
9秒前
魔幻发布了新的文献求助10
9秒前
润兴向禧完成签到,获得积分10
9秒前
笨笨石头应助TTTT采纳,获得10
10秒前
11秒前
shi发布了新的文献求助10
12秒前
Hello应助林夏采纳,获得10
12秒前
耶耶耶y完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160823
求助须知:如何正确求助?哪些是违规求助? 2812005
关于积分的说明 7894119
捐赠科研通 2470886
什么是DOI,文献DOI怎么找? 1315786
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053