亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design

化学空间 密度泛函理论 过渡金属 化学 计算机科学 Atom(片上系统) 计算化学 空格(标点符号) 纳米技术 材料科学 药物发现 催化作用 生物化学 操作系统 嵌入式系统
作者
Jon Paul Janet,Chenru Duan,Aditya Nandy,Fang Liu,Heather J. Kulik
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (3): 532-545 被引量:49
标识
DOI:10.1021/acs.accounts.0c00686
摘要

ConspectusThe variability of chemical bonding in open-shell transition-metal complexes not only motivates their study as functional materials and catalysts but also challenges conventional computational modeling tools. Here, tailoring ligand chemistry can alter preferred spin or oxidation states as well as electronic structure properties and reactivity, creating vast regions of chemical space to explore when designing new materials atom by atom. Although first-principles density functional theory (DFT) remains the workhorse of computational chemistry in mechanism deduction and property prediction, it is of limited use here. DFT is both far too computationally costly for widespread exploration of transition-metal chemical space and also prone to inaccuracies that limit its predictive performance for localized d electrons in transition-metal complexes. These challenges starkly contrast with the well-trodden regions of small-organic-molecule chemical space, where the analytical forms of molecular mechanics force fields and semiempirical theories have for decades accelerated the discovery of new molecules, accurate DFT functional performance has been demonstrated, and gold-standard methods from correlated wavefunction theory can predict experimental results to chemical accuracy.The combined promise of transition-metal chemical space exploration and lack of established tools has mandated a distinct approach. In this Account, we outline the path we charted in exploration of transition-metal chemical space starting from the first machine learning (ML) models (i.e., artificial neural network and kernel ridge regression) and representations for the prediction of open-shell transition-metal complex properties. The distinct importance of the immediate coordination environment of the metal center as well as the lack of low-level methods to accurately predict structural properties in this coordination environment first motivated and then benefited from these ML models and representations. Once developed, the recipe for prediction of geometric, spin state, and redox potential properties was straightforwardly extended to a diverse range of other properties, including in catalysis, computational "feasibility", and the gas separation properties of periodic metal–organic frameworks. Interpretation of selected features most important for model prediction revealed new ways to encapsulate design rules and confirmed that models were robustly mapping essential structure–property relationships. Encountering the special challenge of ensuring that good model performance could generalize to new discovery targets motivated investigation of how to best carry out model uncertainty quantification. Distance-based approaches, whether in model latent space or in carefully engineered feature space, provided intuitive measures of the domain of applicability. With all of these pieces together, ML can be harnessed as an engine to tackle the large-scale exploration of transition-metal chemical space needed to satisfy multiple objectives using efficient global optimization methods. In practical terms, bringing these artificial intelligence tools to bear on the problems of transition-metal chemical space exploration has resulted in ML-model assessments of large, multimillion compound spaces in minutes and validated new design leads in weeks instead of decades.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADMAX发布了新的文献求助10
2秒前
过时的手套完成签到,获得积分10
6秒前
情怀应助过时的手套采纳,获得10
9秒前
管管吃饱辣完成签到 ,获得积分20
11秒前
12秒前
12秒前
MADMAX完成签到,获得积分10
12秒前
郭博发布了新的文献求助10
16秒前
19秒前
小圆圈发布了新的文献求助100
34秒前
38秒前
43秒前
Ava应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得20
1分钟前
jarrykim完成签到,获得积分10
1分钟前
1分钟前
上官若男应助LukeLion采纳,获得10
1分钟前
所所应助轻松一曲采纳,获得10
1分钟前
每㐬山风完成签到 ,获得积分10
1分钟前
1分钟前
LukeLion发布了新的文献求助10
1分钟前
1分钟前
微醺潮汐发布了新的文献求助10
2分钟前
852应助dbyy采纳,获得10
2分钟前
灯光师完成签到,获得积分10
2分钟前
2分钟前
2分钟前
轻松一曲发布了新的文献求助10
2分钟前
轻松一曲完成签到,获得积分10
2分钟前
动听的又亦完成签到 ,获得积分10
2分钟前
2分钟前
du关闭了du文献求助
3分钟前
答辩完成签到 ,获得积分10
3分钟前
3分钟前
领导范儿应助LiuHD采纳,获得10
3分钟前
JoeyJin完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628131
求助须知:如何正确求助?哪些是违规求助? 4715760
关于积分的说明 14963712
捐赠科研通 4785826
什么是DOI,文献DOI怎么找? 2555337
邀请新用户注册赠送积分活动 1516672
关于科研通互助平台的介绍 1477224