Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design

化学空间 密度泛函理论 过渡金属 化学 计算机科学 Atom(片上系统) 计算化学 空格(标点符号) 纳米技术 材料科学 药物发现 催化作用 生物化学 操作系统 嵌入式系统
作者
Jon Paul Janet,Chenru Duan,Aditya Nandy,Fang Liu,Heather J. Kulik
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (3): 532-545 被引量:49
标识
DOI:10.1021/acs.accounts.0c00686
摘要

ConspectusThe variability of chemical bonding in open-shell transition-metal complexes not only motivates their study as functional materials and catalysts but also challenges conventional computational modeling tools. Here, tailoring ligand chemistry can alter preferred spin or oxidation states as well as electronic structure properties and reactivity, creating vast regions of chemical space to explore when designing new materials atom by atom. Although first-principles density functional theory (DFT) remains the workhorse of computational chemistry in mechanism deduction and property prediction, it is of limited use here. DFT is both far too computationally costly for widespread exploration of transition-metal chemical space and also prone to inaccuracies that limit its predictive performance for localized d electrons in transition-metal complexes. These challenges starkly contrast with the well-trodden regions of small-organic-molecule chemical space, where the analytical forms of molecular mechanics force fields and semiempirical theories have for decades accelerated the discovery of new molecules, accurate DFT functional performance has been demonstrated, and gold-standard methods from correlated wavefunction theory can predict experimental results to chemical accuracy.The combined promise of transition-metal chemical space exploration and lack of established tools has mandated a distinct approach. In this Account, we outline the path we charted in exploration of transition-metal chemical space starting from the first machine learning (ML) models (i.e., artificial neural network and kernel ridge regression) and representations for the prediction of open-shell transition-metal complex properties. The distinct importance of the immediate coordination environment of the metal center as well as the lack of low-level methods to accurately predict structural properties in this coordination environment first motivated and then benefited from these ML models and representations. Once developed, the recipe for prediction of geometric, spin state, and redox potential properties was straightforwardly extended to a diverse range of other properties, including in catalysis, computational "feasibility", and the gas separation properties of periodic metal–organic frameworks. Interpretation of selected features most important for model prediction revealed new ways to encapsulate design rules and confirmed that models were robustly mapping essential structure–property relationships. Encountering the special challenge of ensuring that good model performance could generalize to new discovery targets motivated investigation of how to best carry out model uncertainty quantification. Distance-based approaches, whether in model latent space or in carefully engineered feature space, provided intuitive measures of the domain of applicability. With all of these pieces together, ML can be harnessed as an engine to tackle the large-scale exploration of transition-metal chemical space needed to satisfy multiple objectives using efficient global optimization methods. In practical terms, bringing these artificial intelligence tools to bear on the problems of transition-metal chemical space exploration has resulted in ML-model assessments of large, multimillion compound spaces in minutes and validated new design leads in weeks instead of decades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
外向的忆霜完成签到,获得积分10
2秒前
3秒前
andy完成签到,获得积分10
6秒前
7秒前
十一发布了新的文献求助10
7秒前
小象完成签到,获得积分10
10秒前
cvvvvv发布了新的文献求助10
10秒前
刘一发布了新的文献求助20
10秒前
认真的寻冬完成签到,获得积分10
11秒前
高成浩发布了新的文献求助10
12秒前
琅琊为刃完成签到,获得积分10
12秒前
慕青应助Serein采纳,获得10
12秒前
lily完成签到,获得积分10
13秒前
略略略完成签到,获得积分10
14秒前
15秒前
zzyl完成签到,获得积分10
16秒前
yif完成签到 ,获得积分10
18秒前
打打应助wfy采纳,获得10
18秒前
ares-gxd发布了新的文献求助10
19秒前
22秒前
wxiao完成签到,获得积分10
22秒前
24秒前
cvvvvv完成签到,获得积分10
25秒前
梧桐应助言亦云采纳,获得10
25秒前
26秒前
英吉利25发布了新的文献求助10
27秒前
27秒前
九零后无心完成签到,获得积分10
27秒前
ares-gxd完成签到,获得积分10
28秒前
28秒前
凉凉应助坩埚钳采纳,获得10
28秒前
机灵曼青完成签到 ,获得积分10
29秒前
chloe完成签到 ,获得积分10
29秒前
超级的丸子完成签到,获得积分10
30秒前
31秒前
31秒前
量子星尘发布了新的文献求助10
31秒前
恣意完成签到 ,获得积分10
31秒前
耍酷千山发布了新的文献求助10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010191
求助须知:如何正确求助?哪些是违规求助? 3550174
关于积分的说明 11305110
捐赠科研通 3284653
什么是DOI,文献DOI怎么找? 1810748
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451