亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-Ion Batteries

克里金 电池(电) 高斯过程 锂离子电池 分段 计算机科学 协方差 高斯分布 生物系统 机器学习 数学 化学 热力学 统计 物理 数学分析 计算化学 功率(物理) 生物
作者
Kailong Liu,Xiao Hu,Zhongbao Wei,Yi Li,Yan Jiang
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:5 (4): 1225-1236 被引量:263
标识
DOI:10.1109/tte.2019.2944802
摘要

This article presents the development of machine-learning-enabled data-driven models for effective capacity predictions for lithium-ion (Li-ion) batteries under different cyclic conditions. To achieve this, a model structure is first proposed with the considerations of battery aging tendency and the corresponding operational temperature and depth-of-discharge. Then based on a systematic understanding of the covariance functions within the Gaussian process regression (GPR), two related data-driven models are developed. Specifically, by modifying the isotropic squared exponential kernel with an automatic relevance determination structure, “Model A” could extract the highly relevant input features for capacity predictions. Through coupling the Arrhenius law and a polynomial equation into a compositional kernel, “Model B” is capable of considering the electrochemical and empirical knowledge of battery degradation. The developed models are validated and compared on the nickel-manganese-cobalt (NMC) oxide Li-ion batteries with various cycling patterns. The experimental results demonstrate that the modified GPR model considering the battery electrochemical and empirical aging signature outperforms other counterparts and is able to achieve satisfactory results for both one-step and multistep predictions. The proposed technique is promising for battery capacity predictions under various cycling cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
53秒前
1分钟前
桐桐应助秋刀鱼不过期采纳,获得10
1分钟前
隐形曼青应助研友_R2D2采纳,获得10
1分钟前
wanci应助爱撒娇的曼凝采纳,获得10
1分钟前
chen完成签到 ,获得积分10
1分钟前
Wang完成签到 ,获得积分20
2分钟前
赘婿应助天马行空采纳,获得10
2分钟前
8R60d8应助科研通管家采纳,获得10
2分钟前
8R60d8应助科研通管家采纳,获得10
2分钟前
8R60d8应助科研通管家采纳,获得10
2分钟前
8R60d8应助科研通管家采纳,获得10
2分钟前
2分钟前
天马行空完成签到,获得积分20
2分钟前
天马行空发布了新的文献求助10
2分钟前
3分钟前
李健应助枯藤老柳树采纳,获得10
4分钟前
孤独蘑菇完成签到 ,获得积分10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
8R60d8应助科研通管家采纳,获得10
4分钟前
4分钟前
快乐小狗发布了新的文献求助30
5分钟前
zoelir729发布了新的文献求助10
5分钟前
zoelir729完成签到,获得积分10
5分钟前
天天快乐应助自由隶采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
研友_R2D2发布了新的文献求助10
5分钟前
充电宝应助快乐小狗采纳,获得10
6分钟前
ding应助枯藤老柳树采纳,获得10
6分钟前
研友_R2D2完成签到,获得积分10
6分钟前
无私的含海完成签到,获得积分10
6分钟前
黄花菜完成签到 ,获得积分10
6分钟前
通科研完成签到 ,获得积分10
6分钟前
6分钟前
HEIKU应助无私的含海采纳,获得10
6分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787970
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997