A patient-independent CT intensity matching method using conditional generative adversarial networks (cGAN) for single x-ray projection-based tumor localization

计算机科学 人工智能 卷积神经网络 锥束ct 投影(关系代数) 匹配(统计) 计算机视觉 生成对抗网络 深度学习 计算机断层摄影术 模式识别(心理学) 核医学 医学 放射科 算法 病理
作者
Ran Wei,Bo Liu,Fugen Zhou,Xiangzhi Bai,Dongshan Fu,Bin Liang,Qiuwen Wu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
被引量:3
标识
DOI:10.1088/1361-6560/ab8bf2
摘要

A convolutional neural network (CNN)-based tumor localization method with a single x-ray projection was previously developed by us. One finding is that the discrepancy in the discrepancy in the intensity between a digitally reconstructed radiograph (DRR) of a three-dimensional computed tomography (3D-CT) and the measured x-ray projection has an impact on the performance. To address this issue, a patient-dependent intensity matching process for 3D-CT was performed using 3D-cone-beam computed tomography (3D-CBCT) from the same patient, which was sometimes inefficient and could adversely affect the clinical implementation of the framework. To circumvent this, in this work, we propose and validate a patient-independent intensity matching method based on a conditional generative adversarial network (cGAN). A 3D cGAN was trained to approximate the mapping from 3D-CT to 3D-CBCT from previous patient data. By applying the trained network to a new patient, a synthetic 3D-CBCT could be generated without the need to perform an actual CBCT scan on that patient. The DRR of the synthetic 3D-CBCT was subsequently utilized in our CNN-based tumor localization scheme. The method was tested using data from 12 patients with the same imaging parameters. The resulting 3D-CBCT and DRR were compared with real ones to demonstrate the efficacy of the proposed method. The tumor localization errors were also analyzed. The difference between the synthetic and real 3D-CBCT had a median value of no more than 10 HU for all patients. The relative error between the DRR and the measured x-ray projection was less than 4.8% ± 2.0% for all patients. For the three patients with a visible tumor in the x-ray projections, the average tumor localization errors were below 1.7 and 0.9 mm in the superior-inferior and lateral directions, resepectively. A patient-independent CT intensity matching method was developed, based on which accurate tumor localization was achieved. It does not require an actual CBCT scan to be performed before treatment for each patient, therefore making it more efficient in the clinical workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葵花籽完成签到,获得积分10
刚刚
1秒前
小谷发布了新的文献求助10
1秒前
1秒前
1秒前
情怀应助ardejiang采纳,获得10
2秒前
wang完成签到,获得积分10
3秒前
Hellowa发布了新的文献求助10
4秒前
Zhouzhou应助欣慰汉堡采纳,获得10
5秒前
5秒前
晚安鸭箫晓完成签到 ,获得积分10
6秒前
6秒前
6秒前
香蕉觅云应助小谷采纳,获得10
6秒前
和颂给和颂的求助进行了留言
7秒前
允怡完成签到,获得积分10
7秒前
跋扈发布了新的文献求助10
7秒前
8秒前
Zephyr发布了新的文献求助10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
cctv18应助科研通管家采纳,获得30
8秒前
医痞子完成签到,获得积分10
8秒前
Lee应助科研通管家采纳,获得10
8秒前
cctv18应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
张啦啦应助科研通管家采纳,获得30
9秒前
10秒前
CCCC发布了新的文献求助10
10秒前
11秒前
允怡发布了新的文献求助10
11秒前
shanks完成签到,获得积分10
15秒前
yhb关闭了yhb文献求助
17秒前
18秒前
li完成签到,获得积分20
18秒前
谭yuanjun关注了科研通微信公众号
18秒前
Hello应助shanks采纳,获得10
20秒前
云泥完成签到 ,获得积分10
21秒前
zou发布了新的文献求助10
21秒前
22秒前
just flow发布了新的文献求助10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613