Shielding Collaborative Learning: Mitigating Poisoning Attacks through Client-Side Detection

计算机科学 后门 方案(数学) 客户端 过程(计算) 计算机安全 服务器端 能见度 计算机网络 数据挖掘 数学 操作系统 光学 物理 数学分析
作者
Lingchen Zhao,Shengshan Hu,Qian Wang,Jianlin Jiang,Shen Chao,Xiangyang Luo,Pengfei Hu
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:90
标识
DOI:10.1109/tdsc.2020.2986205
摘要

Collaborative learning allows multiple clients to train a joint model without sharing their data with each other. Each client performs training locally and then submits the model updates to a central server for aggregation. Since the server has no visibility into the process of generating the updates, collaborative learning is vulnerable to poisoning attacks where a malicious client can generate a poisoned update to introduce backdoor functionality to the joint model. The existing solutions for detecting poisoned updates, however, fail to defend against the recently proposed attacks, especially in the non-IID (independent and identically distributed) setting. In this article, we present a novel defense scheme to detect anomalous updates in both IID and non-IID settings. Our key idea is to realize client-side cross-validation, where each update is evaluated over other clients' local data. The server will adjust the weights of the updates based on the evaluation results when performing aggregation. To adapt to the unbalanced distribution of data in the non-IID setting, a dynamic client allocation mechanism is designed to assign detection tasks to the most suitable clients. During the detection process, we also protect the client-level privacy to prevent malicious clients from knowing the participations of other clients, by integrating differential privacy with our design without degrading the detection performance. Our experimental evaluations on three real-world datasets show that our scheme is significantly robust to two representative poisoning attacks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到 ,获得积分10
刚刚
京阿尼完成签到,获得积分10
刚刚
1秒前
大模型应助俭朴的猫咪采纳,获得10
1秒前
Anthony_潇完成签到,获得积分10
1秒前
dew发布了新的文献求助30
2秒前
2秒前
吁吁发布了新的文献求助30
3秒前
3秒前
masora完成签到,获得积分10
6秒前
夏夏完成签到 ,获得积分10
6秒前
猩猩星完成签到,获得积分10
6秒前
Jian发布了新的文献求助20
6秒前
7秒前
8秒前
9秒前
连牙蓝上了吗完成签到 ,获得积分10
11秒前
跳跃的半双完成签到,获得积分10
12秒前
12秒前
酷波er应助西门如豹采纳,获得10
13秒前
13秒前
double发布了新的文献求助10
16秒前
17秒前
18秒前
科研通AI2S应助Kelsey采纳,获得10
19秒前
19秒前
努力努力再努力1819完成签到,获得积分10
20秒前
柔弱山芙完成签到,获得积分10
22秒前
23秒前
吁吁发布了新的文献求助10
25秒前
30秒前
烂漫的雅容完成签到,获得积分10
30秒前
爆米花应助健壮的月光采纳,获得10
30秒前
olosveh关注了科研通微信公众号
30秒前
31秒前
32秒前
Irey发布了新的文献求助30
34秒前
浪浪山完成签到,获得积分10
34秒前
Orange应助科研通管家采纳,获得10
35秒前
TrucCSC应助科研通管家采纳,获得10
35秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180810
求助须知:如何正确求助?哪些是违规求助? 2831014
关于积分的说明 7982642
捐赠科研通 2492884
什么是DOI,文献DOI怎么找? 1329918
科研通“疑难数据库(出版商)”最低求助积分说明 635836
版权声明 602954