[The development and validation of risk prediction model for lung cancer: a systematic review].

医学 人口 肺癌 预测建模 计算机科学 肿瘤科 机器学习 环境卫生
作者
Zhangyan Lyu,Fengwei Tan,Chunqing Lin,Li Jiang,Yalong Wang,Hongda Chen,Jiansong Ren,Jufang Shi,Xiaoshuang Feng,Luopei Wei,Xin Li,Yan Wen,Wanqing Chen,Min Dai,Ni Li,Jie He
出处
期刊:PubMed 卷期号:54 (4): 430-437 被引量:3
标识
DOI:10.3760/cma.j.cn112150-20190523-00415
摘要

Objective: To systematically understand the global research progress in the construction and validation of lung cancer risk prediction models. Methods: "lung neoplasms" , "lung cancer" , "lung carcinoma" , "lung tumor" , "risk" , "malignancy" , "carcinogenesis" , "prediction" , "assessment" , "model" , "tool" , "score" , "paradigm" , and "algorithm" were used as search keywords. Original articles were systematically searched from Chinese databases (CNKI, and Wanfang) and English databases (PubMed, Embase, Cochrane, and Web of Science) published prior to December 2018. The language of studies was restricted to Chinese and English. The inclusion criteria were human oriented studies with complete information for model development, validation and evaluation. The exclusion criteria were informal publications such as conference abstracts, Chinese dissertation papers, and research materials such as reviews, letters, and news reports. A total of 33 papers involving 27 models were included. The population characteristics of all included studies, study design, predicting factors and the performance of models were analyzed and compared. Results: Among 27 models, the number of American-based, European-based and Asian-based model studies was 12, 6 and 9, respectively. In addition, there were 6 Chinese-based model studies. According to the factors fitted into the models, these studies could be divided into traditional epidemiological models (11 studies), clinical index models (6 studies), and genetic index models (10 studies). 15 models were not validated after construction or were cross-validated only in the internal population, and the extrapolation effect of models was not effectively evaluated; 8 models were validated in single external population; only 4 models were verified in multiple external populations (3-7); the area under the curve (AUC) of models ranged from 0.57 to 0.90. Conclusion: Research on risk prediction models for lung cancer is in development stage. In addition to the lack of external validation of existing models, the exploration of potential clinical indicators was also limited.目的: 系统评价肺癌风险预测模型构建与验证情况。 方法: 以"肺癌""肺肿瘤""发病""风险""危险""预测""预警""评估""评价""模型""评分"为中文关键词,以"lung neoplasms""lung cancer""lung carcinoma""lung tumor""risk""malignancy""carcinogenesis""prediction""assessment""model""tool""score""paradigm""algorithm"为英文关键词,系统检索中国知网、万方数据服务平台、PubMed、Embase、Cochrane和Web of Science数据库截至2018年12月发表的肺癌风险预测模型相关文献,语种限定为中文和英文。纳入标准为模型构建、验证及评价的信息完整;以人为研究对象。排除标准为会议摘要、中文学位论文等非正式发表文献;综述、述评、新闻报道等研究资料。共纳入33篇文献,涉及27个模型。对纳入研究的人群特征、研究类型、危险因素及模型预测结果等进行分析和比较。 结果: 18个模型基于欧美人群构建,9个模型基于亚洲人群构建,其中基于中国人群研究有7个;根据纳入因素分为传统流行病学因素模型(11个)、结合临床指标模型(6个)和遗传指标模型(10个)。15个模型在构建后未进行验证或仅在内部人群中进行了交叉验证,模型预测效果的外推性未得到有效评价;8个模型在1个外部人群中得到验证;仅有4个模型的风险预测效果在多(3~7)个外部人群中得到了验证;模型的曲线下面积为0.57~0.90。 结论: 肺癌风险预测模型研究处于发展阶段,模型预测效果的外部评价较少且现有模型对于临床指标的探索有限。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的书白完成签到 ,获得积分10
1秒前
2秒前
AD钙奶发布了新的文献求助10
3秒前
MOOTEA发布了新的文献求助10
4秒前
乐乐应助spirit采纳,获得10
4秒前
共享精神应助韩孟霏采纳,获得10
4秒前
俭朴青烟发布了新的文献求助10
7秒前
10秒前
大龙哥886应助颜沛文采纳,获得10
10秒前
11秒前
深情安青应助MOOTEA采纳,获得10
11秒前
李健应助斧王采纳,获得10
11秒前
可靠的纸飞机完成签到 ,获得积分20
12秒前
12秒前
浮游应助乱步采纳,获得10
13秒前
科研通AI6应助vikoel采纳,获得30
14秒前
A.M完成签到 ,获得积分10
15秒前
俭朴青烟完成签到,获得积分10
15秒前
Phoebe发布了新的文献求助20
16秒前
苦命医学生关注了科研通微信公众号
16秒前
left_right发布了新的文献求助10
17秒前
18秒前
buding完成签到,获得积分20
18秒前
虚心青亦完成签到,获得积分10
19秒前
善良雪枫完成签到,获得积分10
20秒前
20秒前
wojiaofuhha发布了新的文献求助10
21秒前
小二郎应助衍夏采纳,获得10
21秒前
ding应助天天采纳,获得10
25秒前
liangbai0707应助天天采纳,获得10
25秒前
在水一方应助天天采纳,获得10
26秒前
浮游应助天天采纳,获得10
26秒前
科研通AI6应助天天采纳,获得10
26秒前
无为发布了新的文献求助20
26秒前
科研通AI2S应助平安喜乐采纳,获得10
27秒前
去有风的地方完成签到 ,获得积分10
29秒前
小雨快跑完成签到,获得积分20
29秒前
29秒前
wojiaofuhha完成签到,获得积分20
29秒前
朴素梦寒发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400805
求助须知:如何正确求助?哪些是违规求助? 4519886
关于积分的说明 14077191
捐赠科研通 4432852
什么是DOI,文献DOI怎么找? 2433843
邀请新用户注册赠送积分活动 1426070
关于科研通互助平台的介绍 1404657