已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel neighborhood archives embedded gravitational constant in GSA

计算机科学 引力搜索算法 物理 万有引力
作者
Susheel Kumar Joshi,Anshul Gopal,Shitu Singh,Atulya K. Nagar,Jagdish Chand Bansal
出处
期刊:Soft Computing [Springer Science+Business Media]
卷期号:25 (8): 6539-6555 被引量:2
标识
DOI:10.1007/s00500-021-05648-x
摘要

Due to its effective search mechanism, gravitational search algorithm (GSA) has become a very popular and robust tool for the global optimization in a very short span of time. The search mechanism of GSA is based on its two features, namely $$K_\mathrm{best}$$ archive and gravitational constant G. The $$K_\mathrm{best}$$ archive stores the best agents (solutions) at any evolutionary state and hence helps GSA for global search. Each agent interacts with exactly same agents of $$K_\mathrm{best}$$ archive without considering its current impact on the search process, which results a rapid loss of diversity, premature convergence and the high time complexity in GSA model. On the other hand, the exponentially decreasing behavior of G scales the step size of the agent. However, this scaling is same for all agents which may cause inappropriate step size for their next move, and therefore leads the swarm towards stagnation or sometimes skipping the true optima. To address these problems, an improved version of GSA called ‘A novel neighborhood archives embedded gravitational constant in GSA (NAGGSA)’ is proposed in this paper. In NAGGSA, we first propose two novel neighborhood archives for each agent which helps in increased diversified search with less time complexity. Secondly, a novel gravitational constant is proposed for each agent according to the distance-fitness based scaling mechanism. The performance of the proposed variant is tested over different suites of well-known benchmark test functions. Experimental results and statistical analyses reveal that NAGGSA remarkably outperforms the compared algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助研友_89eKw8采纳,获得10
1秒前
王白山发布了新的文献求助10
2秒前
yydragen应助1649639951qq采纳,获得30
3秒前
守墓人完成签到 ,获得积分10
4秒前
搜集达人应助dnnnsns采纳,获得30
5秒前
6秒前
黄炜柏呵呵关注了科研通微信公众号
6秒前
10秒前
Yesyes发布了新的文献求助10
11秒前
李爱国应助Zayne采纳,获得10
12秒前
黄晓旭完成签到,获得积分10
12秒前
赵乂发布了新的文献求助10
18秒前
充电宝应助Yesyes采纳,获得10
21秒前
Owen应助成阳采纳,获得10
21秒前
FIN应助种地猪猪采纳,获得10
21秒前
冷月发布了新的文献求助10
22秒前
22秒前
万能图书馆应助X悦采纳,获得10
23秒前
23秒前
liangyong完成签到,获得积分10
24秒前
年糕菌完成签到 ,获得积分10
25秒前
小马甲应助黄晓旭采纳,获得10
26秒前
689发布了新的文献求助10
26秒前
28秒前
29秒前
echo发布了新的文献求助10
30秒前
30秒前
Jasper应助张参采纳,获得10
30秒前
TZ完成签到 ,获得积分10
31秒前
成阳完成签到,获得积分10
32秒前
X悦完成签到,获得积分10
32秒前
堇徽发布了新的文献求助10
32秒前
absorb发布了新的文献求助10
34秒前
成阳发布了新的文献求助10
34秒前
35秒前
小宋爱科研完成签到 ,获得积分10
38秒前
42秒前
Owen应助犹豫的铅笔采纳,获得10
43秒前
可爱的函函应助DengLingjie采纳,获得10
43秒前
研友_89eKw8完成签到,获得积分20
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021