亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel neighborhood archives embedded gravitational constant in GSA

计算机科学 引力搜索算法 物理 万有引力
作者
Susheel Kumar Joshi,Anshul Gopal,Shitu Singh,Atulya K. Nagar,Jagdish Chand Bansal
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (8): 6539-6555 被引量:2
标识
DOI:10.1007/s00500-021-05648-x
摘要

Due to its effective search mechanism, gravitational search algorithm (GSA) has become a very popular and robust tool for the global optimization in a very short span of time. The search mechanism of GSA is based on its two features, namely $$K_\mathrm{best}$$ archive and gravitational constant G. The $$K_\mathrm{best}$$ archive stores the best agents (solutions) at any evolutionary state and hence helps GSA for global search. Each agent interacts with exactly same agents of $$K_\mathrm{best}$$ archive without considering its current impact on the search process, which results a rapid loss of diversity, premature convergence and the high time complexity in GSA model. On the other hand, the exponentially decreasing behavior of G scales the step size of the agent. However, this scaling is same for all agents which may cause inappropriate step size for their next move, and therefore leads the swarm towards stagnation or sometimes skipping the true optima. To address these problems, an improved version of GSA called ‘A novel neighborhood archives embedded gravitational constant in GSA (NAGGSA)’ is proposed in this paper. In NAGGSA, we first propose two novel neighborhood archives for each agent which helps in increased diversified search with less time complexity. Secondly, a novel gravitational constant is proposed for each agent according to the distance-fitness based scaling mechanism. The performance of the proposed variant is tested over different suites of well-known benchmark test functions. Experimental results and statistical analyses reveal that NAGGSA remarkably outperforms the compared algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
研友_VZG7GZ应助碧蓝的雅青采纳,获得10
6秒前
YYL完成签到 ,获得积分10
20秒前
JoeyJin完成签到,获得积分10
20秒前
冷酷恶天完成签到 ,获得积分10
30秒前
35秒前
CipherSage应助jjyy采纳,获得10
36秒前
蓝蓝酱发布了新的文献求助10
39秒前
浮游应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
freyaaaaa应助科研通管家采纳,获得30
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
阔达的寒安完成签到,获得积分10
43秒前
蓝蓝酱完成签到,获得积分10
48秒前
无花果应助jjyy采纳,获得10
57秒前
58秒前
乐乐应助摇叶采纳,获得10
1分钟前
1分钟前
NexusExplorer应助131949采纳,获得10
1分钟前
玩命做研究完成签到 ,获得积分10
1分钟前
1分钟前
思有完成签到 ,获得积分10
1分钟前
许大脚发布了新的文献求助10
1分钟前
1分钟前
131949发布了新的文献求助10
1分钟前
落子狮发布了新的文献求助10
1分钟前
131949完成签到,获得积分20
1分钟前
摇叶完成签到,获得积分10
1分钟前
落子狮完成签到,获得积分10
1分钟前
feizao完成签到,获得积分10
1分钟前
于浩完成签到 ,获得积分10
2分钟前
2分钟前
辰昜完成签到,获得积分10
2分钟前
Eason发布了新的文献求助10
2分钟前
赘婿应助满意的穆采纳,获得10
2分钟前
吃一口芝士完成签到 ,获得积分10
2分钟前
天下无敌丑娃娃完成签到,获得积分10
2分钟前
星辰大海应助Bobo采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498263
求助须知:如何正确求助?哪些是违规求助? 4595573
关于积分的说明 14449342
捐赠科研通 4528249
什么是DOI,文献DOI怎么找? 2481441
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438310