A novel neighborhood archives embedded gravitational constant in GSA

计算机科学 引力搜索算法 物理 万有引力
作者
Susheel Kumar Joshi,Anshul Gopal,Shitu Singh,Atulya K. Nagar,Jagdish Chand Bansal
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (8): 6539-6555 被引量:2
标识
DOI:10.1007/s00500-021-05648-x
摘要

Due to its effective search mechanism, gravitational search algorithm (GSA) has become a very popular and robust tool for the global optimization in a very short span of time. The search mechanism of GSA is based on its two features, namely $$K_\mathrm{best}$$ archive and gravitational constant G. The $$K_\mathrm{best}$$ archive stores the best agents (solutions) at any evolutionary state and hence helps GSA for global search. Each agent interacts with exactly same agents of $$K_\mathrm{best}$$ archive without considering its current impact on the search process, which results a rapid loss of diversity, premature convergence and the high time complexity in GSA model. On the other hand, the exponentially decreasing behavior of G scales the step size of the agent. However, this scaling is same for all agents which may cause inappropriate step size for their next move, and therefore leads the swarm towards stagnation or sometimes skipping the true optima. To address these problems, an improved version of GSA called ‘A novel neighborhood archives embedded gravitational constant in GSA (NAGGSA)’ is proposed in this paper. In NAGGSA, we first propose two novel neighborhood archives for each agent which helps in increased diversified search with less time complexity. Secondly, a novel gravitational constant is proposed for each agent according to the distance-fitness based scaling mechanism. The performance of the proposed variant is tested over different suites of well-known benchmark test functions. Experimental results and statistical analyses reveal that NAGGSA remarkably outperforms the compared algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英勇的剑发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
rrrrrrry发布了新的文献求助20
3秒前
稳重的囧完成签到,获得积分10
3秒前
3秒前
wangfang完成签到,获得积分10
3秒前
3秒前
4秒前
思源应助ll采纳,获得10
4秒前
清尘hm发布了新的文献求助30
5秒前
ccc发布了新的文献求助10
6秒前
wangfang发布了新的文献求助10
6秒前
今后应助luca采纳,获得10
7秒前
激动的士萧完成签到,获得积分10
8秒前
李li发布了新的文献求助10
9秒前
英勇的剑完成签到,获得积分20
9秒前
Yuxuan发布了新的文献求助10
9秒前
一二三发布了新的文献求助10
10秒前
大啊蓉完成签到 ,获得积分10
10秒前
研友_LJGmvn完成签到,获得积分10
10秒前
10秒前
淡淡文博发布了新的文献求助10
10秒前
WQ发布了新的文献求助10
11秒前
12秒前
12秒前
ljs发布了新的文献求助10
12秒前
笨笨盼易完成签到,获得积分20
13秒前
天秀之合完成签到,获得积分10
14秒前
羊羊羊发布了新的文献求助10
16秒前
suresure发布了新的文献求助10
17秒前
orixero应助发的不太好采纳,获得10
18秒前
WYang完成签到,获得积分10
18秒前
穷书匠发布了新的文献求助10
18秒前
Singularity应助振德布吉岛采纳,获得20
19秒前
脑洞疼应助1111chen采纳,获得10
20秒前
清尘hm完成签到,获得积分10
20秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124390
求助须知:如何正确求助?哪些是违规求助? 2774743
关于积分的说明 7723567
捐赠科研通 2430180
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622006
版权声明 600297