A novel neighborhood archives embedded gravitational constant in GSA

计算机科学 引力搜索算法 物理 万有引力
作者
Susheel Kumar Joshi,Anshul Gopal,Shitu Singh,Atulya K. Nagar,Jagdish Chand Bansal
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (8): 6539-6555 被引量:2
标识
DOI:10.1007/s00500-021-05648-x
摘要

Due to its effective search mechanism, gravitational search algorithm (GSA) has become a very popular and robust tool for the global optimization in a very short span of time. The search mechanism of GSA is based on its two features, namely $$K_\mathrm{best}$$ archive and gravitational constant G. The $$K_\mathrm{best}$$ archive stores the best agents (solutions) at any evolutionary state and hence helps GSA for global search. Each agent interacts with exactly same agents of $$K_\mathrm{best}$$ archive without considering its current impact on the search process, which results a rapid loss of diversity, premature convergence and the high time complexity in GSA model. On the other hand, the exponentially decreasing behavior of G scales the step size of the agent. However, this scaling is same for all agents which may cause inappropriate step size for their next move, and therefore leads the swarm towards stagnation or sometimes skipping the true optima. To address these problems, an improved version of GSA called ‘A novel neighborhood archives embedded gravitational constant in GSA (NAGGSA)’ is proposed in this paper. In NAGGSA, we first propose two novel neighborhood archives for each agent which helps in increased diversified search with less time complexity. Secondly, a novel gravitational constant is proposed for each agent according to the distance-fitness based scaling mechanism. The performance of the proposed variant is tested over different suites of well-known benchmark test functions. Experimental results and statistical analyses reveal that NAGGSA remarkably outperforms the compared algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助华仔采纳,获得10
刚刚
3秒前
晫猗完成签到,获得积分20
3秒前
4秒前
所所应助这两天天气咋样采纳,获得10
4秒前
4秒前
5秒前
愉快豪完成签到 ,获得积分10
7秒前
7秒前
砡君应助沈周采纳,获得10
8秒前
心信鑫发布了新的文献求助10
8秒前
8秒前
情怀应助hd采纳,获得10
8秒前
坦率灵槐发布了新的文献求助30
10秒前
奋斗魂幽发布了新的文献求助30
10秒前
10秒前
刘窜疯完成签到 ,获得积分20
11秒前
chunning发布了新的文献求助10
13秒前
辣椒完成签到 ,获得积分10
13秒前
能干冰露完成签到,获得积分10
13秒前
bastien发布了新的文献求助10
14秒前
15秒前
16秒前
return33完成签到,获得积分10
16秒前
Komorebi完成签到,获得积分10
16秒前
申利灿完成签到,获得积分10
17秒前
镓氧锌钇铀应助jaypark采纳,获得10
17秒前
稞小弟完成签到,获得积分10
19秒前
xiaolei001应助李小心采纳,获得20
19秒前
20秒前
小小果妈发布了新的文献求助10
20秒前
ZMTW完成签到 ,获得积分10
20秒前
yhm7426发布了新的文献求助20
21秒前
沈格发布了新的文献求助10
21秒前
斧王应助西出钰门采纳,获得10
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
24秒前
anasy应助NN采纳,获得30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458037
求助须知:如何正确求助?哪些是违规求助? 4564228
关于积分的说明 14293977
捐赠科研通 4488967
什么是DOI,文献DOI怎么找? 2458832
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403