A novel neighborhood archives embedded gravitational constant in GSA

计算机科学 引力搜索算法 物理 万有引力
作者
Susheel Kumar Joshi,Anshul Gopal,Shitu Singh,Atulya K. Nagar,Jagdish Chand Bansal
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (8): 6539-6555 被引量:2
标识
DOI:10.1007/s00500-021-05648-x
摘要

Due to its effective search mechanism, gravitational search algorithm (GSA) has become a very popular and robust tool for the global optimization in a very short span of time. The search mechanism of GSA is based on its two features, namely $$K_\mathrm{best}$$ archive and gravitational constant G. The $$K_\mathrm{best}$$ archive stores the best agents (solutions) at any evolutionary state and hence helps GSA for global search. Each agent interacts with exactly same agents of $$K_\mathrm{best}$$ archive without considering its current impact on the search process, which results a rapid loss of diversity, premature convergence and the high time complexity in GSA model. On the other hand, the exponentially decreasing behavior of G scales the step size of the agent. However, this scaling is same for all agents which may cause inappropriate step size for their next move, and therefore leads the swarm towards stagnation or sometimes skipping the true optima. To address these problems, an improved version of GSA called ‘A novel neighborhood archives embedded gravitational constant in GSA (NAGGSA)’ is proposed in this paper. In NAGGSA, we first propose two novel neighborhood archives for each agent which helps in increased diversified search with less time complexity. Secondly, a novel gravitational constant is proposed for each agent according to the distance-fitness based scaling mechanism. The performance of the proposed variant is tested over different suites of well-known benchmark test functions. Experimental results and statistical analyses reveal that NAGGSA remarkably outperforms the compared algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助ldy采纳,获得10
刚刚
刚刚
X2904063719完成签到,获得积分10
刚刚
充电宝应助H4ppy_n3w_y34r采纳,获得10
刚刚
天才c发布了新的文献求助10
1秒前
科研通AI2S应助youoii采纳,获得10
1秒前
坦率的金针菇完成签到,获得积分10
1秒前
舒适醉香完成签到,获得积分10
1秒前
1秒前
1秒前
现代的千凡完成签到,获得积分10
2秒前
彭于晏应助Janvenns采纳,获得10
2秒前
牛牛发布了新的文献求助10
2秒前
2秒前
平淡的早晨应助hbhbj采纳,获得10
2秒前
eagle发布了新的文献求助10
3秒前
王翼发布了新的文献求助10
3秒前
搜集达人应助勤恳的大娘采纳,获得10
5秒前
kiki完成签到,获得积分10
5秒前
123td完成签到,获得积分10
5秒前
sfx发布了新的文献求助10
5秒前
DDangyl完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
Jans完成签到,获得积分10
6秒前
7秒前
pluto应助Zz采纳,获得10
7秒前
旎旎发布了新的文献求助10
7秒前
7秒前
8秒前
我是老大应助Fairy采纳,获得10
8秒前
zxzxzx完成签到,获得积分10
9秒前
9秒前
10秒前
共享精神应助666采纳,获得10
10秒前
wouldrt完成签到 ,获得积分10
10秒前
zyf完成签到,获得积分10
10秒前
香蕉觅云应助fan采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435327
求助须知:如何正确求助?哪些是违规求助? 4547445
关于积分的说明 14208426
捐赠科研通 4467598
什么是DOI,文献DOI怎么找? 2448659
邀请新用户注册赠送积分活动 1439552
关于科研通互助平台的介绍 1416204