亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel neighborhood archives embedded gravitational constant in GSA

计算机科学 引力搜索算法 物理 万有引力
作者
Susheel Kumar Joshi,Anshul Gopal,Shitu Singh,Atulya K. Nagar,Jagdish Chand Bansal
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (8): 6539-6555 被引量:2
标识
DOI:10.1007/s00500-021-05648-x
摘要

Due to its effective search mechanism, gravitational search algorithm (GSA) has become a very popular and robust tool for the global optimization in a very short span of time. The search mechanism of GSA is based on its two features, namely $$K_\mathrm{best}$$ archive and gravitational constant G. The $$K_\mathrm{best}$$ archive stores the best agents (solutions) at any evolutionary state and hence helps GSA for global search. Each agent interacts with exactly same agents of $$K_\mathrm{best}$$ archive without considering its current impact on the search process, which results a rapid loss of diversity, premature convergence and the high time complexity in GSA model. On the other hand, the exponentially decreasing behavior of G scales the step size of the agent. However, this scaling is same for all agents which may cause inappropriate step size for their next move, and therefore leads the swarm towards stagnation or sometimes skipping the true optima. To address these problems, an improved version of GSA called ‘A novel neighborhood archives embedded gravitational constant in GSA (NAGGSA)’ is proposed in this paper. In NAGGSA, we first propose two novel neighborhood archives for each agent which helps in increased diversified search with less time complexity. Secondly, a novel gravitational constant is proposed for each agent according to the distance-fitness based scaling mechanism. The performance of the proposed variant is tested over different suites of well-known benchmark test functions. Experimental results and statistical analyses reveal that NAGGSA remarkably outperforms the compared algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嘟嘟嘟嘟发布了新的文献求助10
2秒前
9秒前
10秒前
Yuuw完成签到,获得积分10
10秒前
12秒前
Dawn发布了新的文献求助10
14秒前
琥珀三文发布了新的文献求助10
16秒前
21秒前
遇见馅儿饼完成签到,获得积分10
21秒前
华仔应助琥珀三文采纳,获得10
23秒前
顾矜应助遇见馅儿饼采纳,获得10
27秒前
32秒前
负责代珊完成签到,获得积分20
34秒前
Wiiing完成签到,获得积分10
35秒前
35秒前
36秒前
38秒前
38秒前
Wiiing发布了新的文献求助10
39秒前
hyhyhyhy发布了新的文献求助10
40秒前
负责代珊发布了新的文献求助10
42秒前
44秒前
老天师一巴掌完成签到 ,获得积分10
51秒前
51秒前
江旭晴发布了新的文献求助10
54秒前
负责代珊发布了新的文献求助10
54秒前
hyhyhyhy发布了新的文献求助10
59秒前
大个应助Jello采纳,获得10
59秒前
香蕉觅云应助PO采纳,获得10
1分钟前
打打应助负责代珊采纳,获得10
1分钟前
大模型应助迷途小书童采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
linkman发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助hyhyhyhy采纳,获得10
1分钟前
江旭晴完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509411
求助须知:如何正确求助?哪些是违规求助? 4604320
关于积分的说明 14489649
捐赠科研通 4539087
什么是DOI,文献DOI怎么找? 2487289
邀请新用户注册赠送积分活动 1469742
关于科研通互助平台的介绍 1441992