已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Excursion detection and root-cause analysis using virtual overlay metrology

覆盖 计量学 计算机科学 薄脆饼 平版印刷术 可靠性(半导体) 可靠性工程 半导体器件制造 过程(计算) 制作 根本原因 工程类 材料科学 电气工程 程序设计语言 数学 功率(物理) 替代医学 病理 物理 操作系统 统计 医学 量子力学 光电子学
作者
Leon van Dijk,Kedir M. Adal,Mathias Chastan,Auguste Lam,Richard van Haren
出处
期刊:Metrology, Inspection, and Process Control for Semiconductor Manufacturing XXXV 被引量:3
标识
DOI:10.1117/12.2581561
摘要

Overlay is one of the most critical parameters in Integrated Circuit (IC) fabrication as it is a measure for how accurate patterned features are positioned with respect to previously patterned features. Without good overlay, electrical contacts between features will be poor and there can be shorts or opens. Minimizing overlay errors during IC manufacturing is therefore crucial for ensuring high yield and that the performance and reliability specifications of the eventual device are met. For that reason, metrology plays a crucial role in IC fabrication for monitoring the overlay performance and process control. However, due to its high capital equipment cost and impact on cycle time, it is practically impossible to measure every single wafer and/or lot. This means that some excursions cannot be captured and that process drifts might not be detectable in an early phase. Virtual metrology (VM) addresses these challenges as it aims at utilizing the significant amounts of data that are generated during manufacturing by the lithography clusters and other processing equipment, for constructing mathematical and statistical models that predict wafer properties like overlay. In this way, overlay excursions and process drifts can be detected without actually measuring the overlay of these wafers. Preferably, VM is also able to link these excursions and drifts to particular root causes, enabling operators to take preventive measures timely. In this work, we develop virtual overlay metrology for a series of implant layers using a combination of physical and machine learning models. The implant layers relate to ion implantation steps following the Shallow-Trench-Isolation (STI) creation, and both the implant and STI layers are exposed using multiple lithography scanners. A physical model is used to address overlay contributors that can be derived directly from available data. Machine learning algorithms, which are able to learn models from data that can provide predictions for similar, unseen data, are used to predict contributions from less obvious sources of overlay errors. The capability of the overlay prediction model is evaluated on production data. A prediction performance of ~0.7 is achieved in terms of the R-squared statistic and the VM is able to follow variations in the implant-layer overlay and to detect excursions. The excursions can originate from correctable as well as from non-correctable overlay errors. We will show that the interpretability of the prediction model allows us to identify the root cause for the high correctable error variation in the implant-layer overlay. Furthermore, overlay contributors will be identified that may not have a direct impact on the less critical overlay of implant layers. However, they may contribute significantly to the Gate-to-STI overlay as well, and we will show the potential of virtual overlay metrology for downstream layer excursion detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmtm123完成签到,获得积分10
刚刚
小鲸鱼应助热心纸飞机采纳,获得10
1秒前
虚心寻双发布了新的文献求助100
3秒前
马华化完成签到,获得积分0
3秒前
科研通AI40应助要减肥芯采纳,获得10
4秒前
bkagyin应助wcy采纳,获得10
4秒前
5秒前
FERN0826完成签到 ,获得积分10
6秒前
7秒前
朱子涵发布了新的文献求助50
10秒前
hdy发布了新的文献求助10
10秒前
11秒前
香蕉觅云应助不吃别夹采纳,获得10
11秒前
许我人间一两风完成签到 ,获得积分10
11秒前
oydent发布了新的文献求助10
16秒前
脑洞疼应助中肉肉采纳,获得10
16秒前
闪闪惜天发布了新的文献求助10
16秒前
卷心菜的菜完成签到 ,获得积分10
16秒前
17秒前
爱笑的大树完成签到 ,获得积分10
17秒前
18秒前
神经元完成签到,获得积分10
19秒前
千阳完成签到 ,获得积分20
19秒前
开心叫兽发布了新的文献求助10
21秒前
21秒前
冻凉之材完成签到,获得积分10
21秒前
22秒前
春携秋水揽星河完成签到,获得积分10
22秒前
23秒前
小二郎应助烂漫的寻冬采纳,获得10
24秒前
25秒前
糊涂小医仙完成签到,获得积分20
26秒前
要减肥芯发布了新的文献求助10
28秒前
29秒前
chase发布了新的文献求助10
29秒前
30秒前
调皮发夹发布了新的文献求助10
31秒前
善学以致用应助飞羽采纳,获得10
32秒前
JamesPei应助minoricl采纳,获得10
32秒前
CodeCraft应助美满忆安采纳,获得10
32秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471259
求助须知:如何正确求助?哪些是违规求助? 3064129
关于积分的说明 9087605
捐赠科研通 2754938
什么是DOI,文献DOI怎么找? 1511647
邀请新用户注册赠送积分活动 698541
科研通“疑难数据库(出版商)”最低求助积分说明 698423