Natural language processing for structuring clinical text data on depression using UK-CRIS

结构化 自然语言处理 计算机科学 萧条(经济学) 自然(考古学) 人工智能 语言学 心理学 历史 政治学 哲学 考古 宏观经济学 经济 法学
作者
Nemanja Vaci,Qiang Liu,Andrey Kormilitzin,Franco De Crescenzo,Ayse Kurtulmuş,Jade Harvey,Bessie O’Dell,Simeon Innocent,Anneka Tomlinson,Andrea Cipriani,Alejo Nevado‐Holgado
出处
期刊:Evidence-based Mental Health [BMJ]
卷期号:23 (1): 21-26 被引量:53
标识
DOI:10.1136/ebmental-2019-300134
摘要

Background Utilisation of routinely collected electronic health records from secondary care offers unprecedented possibilities for medical science research but can also present difficulties. One key issue is that medical information is presented as free-form text and, therefore, requires time commitment from clinicians to manually extract salient information. Natural language processing (NLP) methods can be used to automatically extract clinically relevant information. Objective Our aim is to use natural language processing (NLP) to capture real-world data on individuals with depression from the Clinical Record Interactive Search (CRIS) clinical text to foster the use of electronic healthcare data in mental health research. Methods We used a combination of methods to extract salient information from electronic health records. First, clinical experts define the information of interest and subsequently build the training and testing corpora for statistical models. Second, we built and fine-tuned the statistical models using active learning procedures. Findings Results show a high degree of accuracy in the extraction of drug-related information. Contrastingly, a much lower degree of accuracy is demonstrated in relation to auxiliary variables. In combination with state-of-the-art active learning paradigms, the performance of the model increases considerably. Conclusions This study illustrates the feasibility of using the natural language processing models and proposes a research pipeline to be used for accurately extracting information from electronic health records. Clinical implications Real-world, individual patient data are an invaluable source of information, which can be used to better personalise treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lascy完成签到,获得积分10
刚刚
刚刚
树先生发布了新的文献求助10
1秒前
大笨冰完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
aldehyde应助yly123采纳,获得10
2秒前
3秒前
4秒前
Singularity应助志在山野居采纳,获得10
5秒前
Aegean完成签到,获得积分10
5秒前
lascy发布了新的文献求助30
5秒前
123应助树先生采纳,获得20
6秒前
6秒前
研友_R2D2发布了新的文献求助10
6秒前
乐天儿发布了新的文献求助30
6秒前
上官若男应助wx采纳,获得10
7秒前
caomao发布了新的文献求助10
7秒前
xiao123789发布了新的文献求助10
7秒前
9秒前
852应助YH采纳,获得10
11秒前
温暖天与应助zxxx采纳,获得10
11秒前
丘比特应助NanNan626采纳,获得10
11秒前
13秒前
斯文的晓博完成签到,获得积分10
13秒前
19应助寒冷雨竹采纳,获得10
14秒前
zzt发布了新的文献求助10
15秒前
QIAN发布了新的文献求助10
15秒前
华仔应助wsy采纳,获得10
16秒前
小蘑菇应助志在山野居采纳,获得10
19秒前
23秒前
JamesPei应助ybheqiang123456采纳,获得10
24秒前
zzt完成签到,获得积分20
24秒前
坦率的跳跳糖完成签到 ,获得积分10
25秒前
25秒前
26秒前
27秒前
Hello应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313983
求助须知:如何正确求助?哪些是违规求助? 2946364
关于积分的说明 8529773
捐赠科研通 2622015
什么是DOI,文献DOI怎么找? 1434286
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774