Machine learning based method for the evaluation of the Analgesia Nociception Index in the assessment of general anesthesia

伤害 医学 血流动力学 麻醉 支持向量机 心率 类阿片 平均动脉压 脑电双频指数 人工智能 血压 镇静 计算机科学 内科学 受体
作者
José M. González-Cava,Rafael Arnay,Ana M. León,M.C. Martín Delgado,José Antonio Reboso,José Luís Calvo-Rolle,Juan Albino Méndez Pérez
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:118: 103645-103645 被引量:12
标识
DOI:10.1016/j.compbiomed.2020.103645
摘要

Measuring the level of analgesia to adapt the opioids infusion during anesthesia to the real needs of the patient is still a challenge. This is a consequence of the absence of a specific measure capable of quantifying the nociception level of the patients. Unlike existing proposals, this paper aims to evaluate the suitability of the Analgesia Nociception Index (ANI) as a guidance variable to replicate the decisions made by the experts when a modification of the opioid infusion rate is required. To this end, different machine learning classifiers were trained with several sets of clinical features. Data for training were captured from 17 patients undergoing cholecystectomy surgery. Satisfactory results were obtained when including information about minimum values of ANI for predicting a change of dose. Specifically, a higher efficiency of the Support Vector Machine (SVM) classifier was observed compared with the situation in which the ANI index was not included: accuracy: 86.21% (83.62%–87.93%), precision: 86.11% (83.78%–88.57%), recall: 91.18% (88.24%–91.18%), specificity: 79.17% (75%–83.33%), AUC: 0.89 (0.87–0.90) and kappa index: 0.71 (0.66–0.75). The results of this research evidenced that including information about the minimum values of ANI together with the hemodynamic information outperformed the decisions made regarding only non-specific traditional signs such as heart rate and blood pressure. In addition, the analysis of the results showed that including the ANI monitor in the decision making process may anticipate a dose change to prevent hemodynamic events. Finally, the SVM was able to perform accurate predictions when making different decisions commonly observed in the clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静香氛完成签到 ,获得积分10
4秒前
6秒前
北笙完成签到 ,获得积分10
8秒前
卢健辉发布了新的文献求助10
12秒前
mark33442完成签到,获得积分10
13秒前
明天过后完成签到,获得积分10
15秒前
zhangxin完成签到,获得积分10
16秒前
一行白鹭上青天完成签到 ,获得积分10
18秒前
卢健辉完成签到,获得积分10
18秒前
汉堡包应助迷路的煎蛋采纳,获得10
19秒前
lightman完成签到,获得积分10
23秒前
25秒前
26秒前
欧阳小枫完成签到 ,获得积分10
26秒前
重要铃铛完成签到 ,获得积分10
30秒前
30秒前
31秒前
Hello应助Ying采纳,获得20
31秒前
amy完成签到,获得积分10
34秒前
ivyjianjie完成签到 ,获得积分10
40秒前
DaDA完成签到 ,获得积分10
45秒前
晚晚完成签到,获得积分10
45秒前
大陆完成签到,获得积分0
48秒前
猪猪女孩完成签到,获得积分10
49秒前
欢喜板凳完成签到 ,获得积分10
49秒前
lu完成签到,获得积分10
52秒前
郭元强完成签到,获得积分10
54秒前
小许完成签到 ,获得积分10
54秒前
55秒前
xiaofeiyan完成签到 ,获得积分10
57秒前
llhh2024完成签到,获得积分10
1分钟前
心系天下完成签到 ,获得积分10
1分钟前
David完成签到 ,获得积分10
1分钟前
monoanan完成签到 ,获得积分10
1分钟前
无极2023完成签到 ,获得积分0
1分钟前
瘦瘦的铅笔完成签到 ,获得积分10
1分钟前
pengyh8完成签到 ,获得积分10
1分钟前
1分钟前
xxxx完成签到 ,获得积分10
1分钟前
mojito完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167370
捐赠科研通 3248808
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664