Machine learning based method for the evaluation of the Analgesia Nociception Index in the assessment of general anesthesia

伤害 医学 血流动力学 麻醉 支持向量机 心率 类阿片 平均动脉压 脑电双频指数 人工智能 血压 镇静 计算机科学 内科学 受体
作者
José M. González-Cava,Rafael Arnay,Ana M. León,M.C. Martín Delgado,José Antonio Reboso,José Luís Calvo-Rolle,Juan Albino Méndez Pérez
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:118: 103645-103645 被引量:12
标识
DOI:10.1016/j.compbiomed.2020.103645
摘要

Measuring the level of analgesia to adapt the opioids infusion during anesthesia to the real needs of the patient is still a challenge. This is a consequence of the absence of a specific measure capable of quantifying the nociception level of the patients. Unlike existing proposals, this paper aims to evaluate the suitability of the Analgesia Nociception Index (ANI) as a guidance variable to replicate the decisions made by the experts when a modification of the opioid infusion rate is required. To this end, different machine learning classifiers were trained with several sets of clinical features. Data for training were captured from 17 patients undergoing cholecystectomy surgery. Satisfactory results were obtained when including information about minimum values of ANI for predicting a change of dose. Specifically, a higher efficiency of the Support Vector Machine (SVM) classifier was observed compared with the situation in which the ANI index was not included: accuracy: 86.21% (83.62%–87.93%), precision: 86.11% (83.78%–88.57%), recall: 91.18% (88.24%–91.18%), specificity: 79.17% (75%–83.33%), AUC: 0.89 (0.87–0.90) and kappa index: 0.71 (0.66–0.75). The results of this research evidenced that including information about the minimum values of ANI together with the hemodynamic information outperformed the decisions made regarding only non-specific traditional signs such as heart rate and blood pressure. In addition, the analysis of the results showed that including the ANI monitor in the decision making process may anticipate a dose change to prevent hemodynamic events. Finally, the SVM was able to perform accurate predictions when making different decisions commonly observed in the clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwenng发布了新的文献求助10
刚刚
乐乐应助姗姗_采纳,获得10
1秒前
Criminology34应助巫马尔槐采纳,获得10
1秒前
山水之乐发布了新的文献求助10
2秒前
852应助羽翊采纳,获得10
3秒前
sonia发布了新的文献求助10
3秒前
3秒前
CKX完成签到,获得积分10
3秒前
科研通AI5应助南乔采纳,获得10
4秒前
恒星发布了新的文献求助10
5秒前
Criminology34应助巫马尔槐采纳,获得10
5秒前
6秒前
6秒前
蛔虫扭啊扭完成签到,获得积分10
6秒前
搜集达人应助1282941496采纳,获得10
6秒前
专注雁桃发布了新的文献求助10
7秒前
8秒前
共享精神应助木木夕采纳,获得10
8秒前
9秒前
9秒前
南浔发布了新的文献求助10
10秒前
ZhaohuaXie应助独特的姝采纳,获得10
10秒前
11秒前
iOhyeye23发布了新的文献求助30
11秒前
11秒前
无辜的擎宇完成签到,获得积分20
11秒前
12秒前
12秒前
Chief完成签到,获得积分0
13秒前
可靠的绿茶关注了科研通微信公众号
14秒前
淡淡依霜发布了新的文献求助10
14秒前
134345发布了新的文献求助10
15秒前
爆米花应助NIDE采纳,获得10
15秒前
16秒前
zhengjinwu发布了新的文献求助10
16秒前
土豆土豆我是番茄酱完成签到,获得积分10
16秒前
Donlian发布了新的文献求助10
16秒前
你好发布了新的文献求助10
16秒前
星辰大海应助炙热晓露采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934127
求助须知:如何正确求助?哪些是违规求助? 4202119
关于积分的说明 13056004
捐赠科研通 3976280
什么是DOI,文献DOI怎么找? 2178910
邀请新用户注册赠送积分活动 1195201
关于科研通互助平台的介绍 1106567