已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based method for the evaluation of the Analgesia Nociception Index in the assessment of general anesthesia

伤害 医学 血流动力学 麻醉 支持向量机 心率 类阿片 平均动脉压 脑电双频指数 人工智能 血压 镇静 计算机科学 内科学 受体
作者
José M. González-Cava,Rafael Arnay,Ana M. León,M.C. Martín Delgado,José Antonio Reboso,José Luís Calvo-Rolle,Juan Albino Méndez Pérez
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:118: 103645-103645 被引量:12
标识
DOI:10.1016/j.compbiomed.2020.103645
摘要

Measuring the level of analgesia to adapt the opioids infusion during anesthesia to the real needs of the patient is still a challenge. This is a consequence of the absence of a specific measure capable of quantifying the nociception level of the patients. Unlike existing proposals, this paper aims to evaluate the suitability of the Analgesia Nociception Index (ANI) as a guidance variable to replicate the decisions made by the experts when a modification of the opioid infusion rate is required. To this end, different machine learning classifiers were trained with several sets of clinical features. Data for training were captured from 17 patients undergoing cholecystectomy surgery. Satisfactory results were obtained when including information about minimum values of ANI for predicting a change of dose. Specifically, a higher efficiency of the Support Vector Machine (SVM) classifier was observed compared with the situation in which the ANI index was not included: accuracy: 86.21% (83.62%–87.93%), precision: 86.11% (83.78%–88.57%), recall: 91.18% (88.24%–91.18%), specificity: 79.17% (75%–83.33%), AUC: 0.89 (0.87–0.90) and kappa index: 0.71 (0.66–0.75). The results of this research evidenced that including information about the minimum values of ANI together with the hemodynamic information outperformed the decisions made regarding only non-specific traditional signs such as heart rate and blood pressure. In addition, the analysis of the results showed that including the ANI monitor in the decision making process may anticipate a dose change to prevent hemodynamic events. Finally, the SVM was able to perform accurate predictions when making different decisions commonly observed in the clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱包的馒发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
华仔应助海绵宝宝采纳,获得10
4秒前
芯之痕发布了新的文献求助10
6秒前
9秒前
10秒前
10秒前
慕青应助哈哈哈哈采纳,获得10
11秒前
bkagyin应助philophysics采纳,获得10
12秒前
玊尔发布了新的文献求助10
12秒前
希文发布了新的文献求助10
13秒前
13秒前
CodeCraft应助Foxxxy采纳,获得30
13秒前
蒋瑞轩发布了新的文献求助10
15秒前
coubakuai发布了新的文献求助10
16秒前
海绵宝宝发布了新的文献求助10
16秒前
研友_LkD29n发布了新的文献求助10
16秒前
Asher发布了新的文献求助10
18秒前
HLQF完成签到,获得积分10
19秒前
19秒前
向日葵的微笑完成签到,获得积分10
20秒前
huangrui完成签到 ,获得积分10
23秒前
叁叁完成签到 ,获得积分10
23秒前
领导范儿应助huangy采纳,获得30
23秒前
吃个橘子完成签到,获得积分10
23秒前
哈哈哈哈发布了新的文献求助10
24秒前
希文完成签到,获得积分10
26秒前
27秒前
28秒前
31秒前
31秒前
紧张的世德完成签到,获得积分10
32秒前
Foxxxy发布了新的文献求助30
34秒前
36秒前
huangy发布了新的文献求助30
36秒前
yhy发布了新的文献求助10
37秒前
科研通AI5应助芯之痕采纳,获得10
38秒前
上官若男应助小金刀采纳,获得10
38秒前
SciGPT应助U9A采纳,获得20
39秒前
科研狗子发布了新的文献求助50
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976531
求助须知:如何正确求助?哪些是违规求助? 3520576
关于积分的说明 11204042
捐赠科研通 3257210
什么是DOI,文献DOI怎么找? 1798648
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806555