Machine learning based method for the evaluation of the Analgesia Nociception Index in the assessment of general anesthesia

伤害 医学 血流动力学 麻醉 支持向量机 心率 类阿片 平均动脉压 脑电双频指数 人工智能 血压 镇静 计算机科学 内科学 受体
作者
José M. González-Cava,Rafael Arnay,Ana M. León,M.C. Martín Delgado,José Antonio Reboso,José Luís Calvo-Rolle,Juan Albino Méndez Pérez
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:118: 103645-103645 被引量:12
标识
DOI:10.1016/j.compbiomed.2020.103645
摘要

Measuring the level of analgesia to adapt the opioids infusion during anesthesia to the real needs of the patient is still a challenge. This is a consequence of the absence of a specific measure capable of quantifying the nociception level of the patients. Unlike existing proposals, this paper aims to evaluate the suitability of the Analgesia Nociception Index (ANI) as a guidance variable to replicate the decisions made by the experts when a modification of the opioid infusion rate is required. To this end, different machine learning classifiers were trained with several sets of clinical features. Data for training were captured from 17 patients undergoing cholecystectomy surgery. Satisfactory results were obtained when including information about minimum values of ANI for predicting a change of dose. Specifically, a higher efficiency of the Support Vector Machine (SVM) classifier was observed compared with the situation in which the ANI index was not included: accuracy: 86.21% (83.62%–87.93%), precision: 86.11% (83.78%–88.57%), recall: 91.18% (88.24%–91.18%), specificity: 79.17% (75%–83.33%), AUC: 0.89 (0.87–0.90) and kappa index: 0.71 (0.66–0.75). The results of this research evidenced that including information about the minimum values of ANI together with the hemodynamic information outperformed the decisions made regarding only non-specific traditional signs such as heart rate and blood pressure. In addition, the analysis of the results showed that including the ANI monitor in the decision making process may anticipate a dose change to prevent hemodynamic events. Finally, the SVM was able to perform accurate predictions when making different decisions commonly observed in the clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
干净夏岚完成签到,获得积分10
2秒前
leyellows发布了新的文献求助10
2秒前
3秒前
英俊的铭应助失眠班采纳,获得10
4秒前
五十个小学生完成签到 ,获得积分10
4秒前
爱学习给爱学习的求助进行了留言
5秒前
轻松的尔风完成签到,获得积分10
5秒前
fbpuf发布了新的文献求助10
6秒前
萧海完成签到,获得积分10
7秒前
迷迭香发布了新的文献求助20
7秒前
kelly琳完成签到,获得积分10
8秒前
PG完成签到 ,获得积分0
8秒前
黄垚发布了新的文献求助10
8秒前
9秒前
9秒前
传奇3应助zeng123采纳,获得10
9秒前
zyycau发布了新的文献求助20
9秒前
10秒前
leyellows完成签到,获得积分10
11秒前
彭于晏应助wxy采纳,获得10
11秒前
12秒前
12秒前
sundaytan发布了新的文献求助10
12秒前
kelly琳发布了新的文献求助10
13秒前
xx完成签到,获得积分10
13秒前
3s发布了新的文献求助10
13秒前
14秒前
14秒前
Jia发布了新的文献求助10
14秒前
15秒前
15秒前
李博士发布了新的文献求助10
16秒前
16秒前
孤独的无血完成签到,获得积分10
16秒前
17秒前
Lucas应助元素采纳,获得10
17秒前
Jasper应助忧心的秋尽采纳,获得10
18秒前
科研通AI2S应助kelly琳采纳,获得10
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157055
求助须知:如何正确求助?哪些是违规求助? 2808405
关于积分的说明 7877451
捐赠科研通 2466898
什么是DOI,文献DOI怎么找? 1313069
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919