Machine learning based method for the evaluation of the Analgesia Nociception Index in the assessment of general anesthesia

伤害 医学 血流动力学 麻醉 支持向量机 心率 类阿片 平均动脉压 脑电双频指数 人工智能 血压 镇静 计算机科学 内科学 受体
作者
José M. González-Cava,Rafael Arnay,Ana M. León,M.C. Martín Delgado,José Antonio Reboso,José Luís Calvo-Rolle,Juan Albino Méndez Pérez
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:118: 103645-103645 被引量:12
标识
DOI:10.1016/j.compbiomed.2020.103645
摘要

Measuring the level of analgesia to adapt the opioids infusion during anesthesia to the real needs of the patient is still a challenge. This is a consequence of the absence of a specific measure capable of quantifying the nociception level of the patients. Unlike existing proposals, this paper aims to evaluate the suitability of the Analgesia Nociception Index (ANI) as a guidance variable to replicate the decisions made by the experts when a modification of the opioid infusion rate is required. To this end, different machine learning classifiers were trained with several sets of clinical features. Data for training were captured from 17 patients undergoing cholecystectomy surgery. Satisfactory results were obtained when including information about minimum values of ANI for predicting a change of dose. Specifically, a higher efficiency of the Support Vector Machine (SVM) classifier was observed compared with the situation in which the ANI index was not included: accuracy: 86.21% (83.62%–87.93%), precision: 86.11% (83.78%–88.57%), recall: 91.18% (88.24%–91.18%), specificity: 79.17% (75%–83.33%), AUC: 0.89 (0.87–0.90) and kappa index: 0.71 (0.66–0.75). The results of this research evidenced that including information about the minimum values of ANI together with the hemodynamic information outperformed the decisions made regarding only non-specific traditional signs such as heart rate and blood pressure. In addition, the analysis of the results showed that including the ANI monitor in the decision making process may anticipate a dose change to prevent hemodynamic events. Finally, the SVM was able to perform accurate predictions when making different decisions commonly observed in the clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
晒太阳比赛冠军完成签到 ,获得积分10
2秒前
一一应助Liekkas采纳,获得200
2秒前
liuyi666发布了新的文献求助10
4秒前
5秒前
然来溪完成签到 ,获得积分10
5秒前
zyy0811完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
12秒前
12秒前
灵巧夏彤完成签到 ,获得积分10
13秒前
ding应助珍珠红茶采纳,获得10
13秒前
先吃一只羊完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
17秒前
搜集达人应助姚裕采纳,获得10
18秒前
zhenyu0430完成签到,获得积分10
18秒前
19秒前
Hhh发布了新的文献求助10
19秒前
JUNLINGDENG完成签到 ,获得积分10
19秒前
晞晞完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
cora发布了新的文献求助10
21秒前
21秒前
科研通AI6应助枯叶蝶采纳,获得10
22秒前
22秒前
23秒前
zhi发布了新的文献求助10
24秒前
Lucas应助雪菜大王采纳,获得10
24秒前
充电宝应助晞晞采纳,获得10
25秒前
25秒前
河豚素应助Lance先生采纳,获得10
25秒前
cora完成签到,获得积分10
25秒前
水水发布了新的文献求助10
26秒前
26秒前
工诩发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407027
求助须知:如何正确求助?哪些是违规求助? 4524685
关于积分的说明 14099897
捐赠科研通 4438552
什么是DOI,文献DOI怎么找? 2436342
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406406