Deep learning for prediction of colorectal cancer outcome: a discovery and validation study

结直肠癌 队列 生物标志物 危险系数 卡培他滨 医学 阶段(地层学) 肿瘤科 内科学 癌症 置信区间 生物化学 生物 古生物学 化学
作者
Ole-Johan Skrede,Sepp de Raedt,Andreas Kleppe,Tarjei S. Hveem,Knut Liestøl,John Maddison,Hanne A. Askautrud,Manohar Pradhan,John Arne Nesheim,Fritz Albregtsen,Inger Nina Farstad,Enric Domingo,David N. Church,Arild Nesbakken,Neil A. Shepherd,Ian Tomlinson,Rachel Kerr,Marco Novelli,David J. Kerr,Håvard E. Danielsen
出处
期刊:The Lancet [Elsevier]
卷期号:395 (10221): 350-360 被引量:442
标识
DOI:10.1016/s0140-6736(19)32998-8
摘要

Summary

Background

Improved markers of prognosis are needed to stratify patients with early-stage colorectal cancer to refine selection of adjuvant therapy. The aim of the present study was to develop a biomarker of patient outcome after primary colorectal cancer resection by directly analysing scanned conventional haematoxylin and eosin stained sections using deep learning.

Methods

More than 12 000 000 image tiles from patients with a distinctly good or poor disease outcome from four cohorts were used to train a total of ten convolutional neural networks, purpose-built for classifying supersized heterogeneous images. A prognostic biomarker integrating the ten networks was determined using patients with a non-distinct outcome. The marker was tested on 920 patients with slides prepared in the UK, and then independently validated according to a predefined protocol in 1122 patients treated with single-agent capecitabine using slides prepared in Norway. All cohorts included only patients with resectable tumours, and a formalin-fixed, paraffin-embedded tumour tissue block available for analysis. The primary outcome was cancer-specific survival.

Findings

828 patients from four cohorts had a distinct outcome and were used as a training cohort to obtain clear ground truth. 1645 patients had a non-distinct outcome and were used for tuning. The biomarker provided a hazard ratio for poor versus good prognosis of 3·84 (95% CI 2·72–5·43; p<0·0001) in the primary analysis of the validation cohort, and 3·04 (2·07–4·47; p<0·0001) after adjusting for established prognostic markers significant in univariable analyses of the same cohort, which were pN stage, pT stage, lymphatic invasion, and venous vascular invasion.

Interpretation

A clinically useful prognostic marker was developed using deep learning allied to digital scanning of conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in large, independent patient populations, correlates with and outperforms established molecular and morphological prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more intensive treatment regimes.

Funding

The Research Council of Norway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oscillator发布了新的文献求助10
刚刚
1秒前
涛涛完成签到,获得积分20
1秒前
Jasper应助111采纳,获得10
2秒前
2秒前
2秒前
四夕完成签到,获得积分10
4秒前
慕新完成签到,获得积分10
4秒前
5秒前
Mint发布了新的文献求助10
5秒前
自觉的歌曲完成签到,获得积分10
5秒前
桥辉完成签到,获得积分10
6秒前
7秒前
政政勇闯世界完成签到,获得积分10
8秒前
哈哈哈完成签到,获得积分10
8秒前
完美绮琴发布了新的文献求助10
8秒前
镭射眼发布了新的文献求助10
8秒前
真真正正完成签到,获得积分10
8秒前
ccc发布了新的文献求助10
10秒前
领导范儿应助辣可尼斯采纳,获得10
10秒前
10秒前
11秒前
ff发布了新的文献求助10
12秒前
宁诺完成签到,获得积分10
13秒前
nnn发布了新的文献求助10
13秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
Leona666应助科研通管家采纳,获得10
14秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得30
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
镭射眼完成签到,获得积分10
15秒前
15秒前
穆小菜发布了新的文献求助10
17秒前
斯文败类应助Fzx2664242918采纳,获得10
17秒前
17秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3051601
求助须知:如何正确求助?哪些是违规求助? 2708914
关于积分的说明 7414939
捐赠科研通 2353282
什么是DOI,文献DOI怎么找? 1245459
科研通“疑难数据库(出版商)”最低求助积分说明 605681
版权声明 595846