Deep learning for prediction of colorectal cancer outcome: a discovery and validation study

结直肠癌 队列 生物标志物 危险系数 卡培他滨 医学 阶段(地层学) 肿瘤科 内科学 癌症 置信区间 生物化学 生物 古生物学 化学
作者
Ole-Johan Skrede,Sepp de Raedt,Andreas Kleppe,Tarjei S. Hveem,Knut Liestøl,John Maddison,Hanne A. Askautrud,Manohar Pradhan,John Arne Nesheim,Fritz Albregtsen,Inger Nina Farstad,Enric Domingo,David N. Church,Arild Nesbakken,Neil A. Shepherd,Ian Tomlinson,Rachel Kerr,Marco Novelli,David J. Kerr,Håvard E. Danielsen
出处
期刊:The Lancet [Elsevier BV]
卷期号:395 (10221): 350-360 被引量:493
标识
DOI:10.1016/s0140-6736(19)32998-8
摘要

Summary

Background

Improved markers of prognosis are needed to stratify patients with early-stage colorectal cancer to refine selection of adjuvant therapy. The aim of the present study was to develop a biomarker of patient outcome after primary colorectal cancer resection by directly analysing scanned conventional haematoxylin and eosin stained sections using deep learning.

Methods

More than 12 000 000 image tiles from patients with a distinctly good or poor disease outcome from four cohorts were used to train a total of ten convolutional neural networks, purpose-built for classifying supersized heterogeneous images. A prognostic biomarker integrating the ten networks was determined using patients with a non-distinct outcome. The marker was tested on 920 patients with slides prepared in the UK, and then independently validated according to a predefined protocol in 1122 patients treated with single-agent capecitabine using slides prepared in Norway. All cohorts included only patients with resectable tumours, and a formalin-fixed, paraffin-embedded tumour tissue block available for analysis. The primary outcome was cancer-specific survival.

Findings

828 patients from four cohorts had a distinct outcome and were used as a training cohort to obtain clear ground truth. 1645 patients had a non-distinct outcome and were used for tuning. The biomarker provided a hazard ratio for poor versus good prognosis of 3·84 (95% CI 2·72–5·43; p<0·0001) in the primary analysis of the validation cohort, and 3·04 (2·07–4·47; p<0·0001) after adjusting for established prognostic markers significant in univariable analyses of the same cohort, which were pN stage, pT stage, lymphatic invasion, and venous vascular invasion.

Interpretation

A clinically useful prognostic marker was developed using deep learning allied to digital scanning of conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in large, independent patient populations, correlates with and outperforms established molecular and morphological prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more intensive treatment regimes.

Funding

The Research Council of Norway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jidou1011完成签到,获得积分10
1秒前
扁舟灬完成签到,获得积分10
1秒前
QZZ完成签到,获得积分10
1秒前
agnway完成签到,获得积分10
1秒前
2秒前
战战兢兢完成签到 ,获得积分10
2秒前
xuejie发布了新的文献求助30
2秒前
专一的傲白完成签到 ,获得积分10
2秒前
星辰大海应助miezhugong采纳,获得30
3秒前
zh完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
CodeCraft应助he采纳,获得10
3秒前
wisdom完成签到,获得积分10
4秒前
科研通AI2S应助Distance采纳,获得20
4秒前
5秒前
5秒前
肖耶啵完成签到,获得积分10
5秒前
betyby发布了新的文献求助10
6秒前
6秒前
电致阿光完成签到,获得积分10
7秒前
科研通AI2S应助zhuang采纳,获得10
7秒前
羊羊完成签到,获得积分10
7秒前
范月月完成签到 ,获得积分10
8秒前
甜美追命发布了新的文献求助10
9秒前
Eric_Zhang完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
10秒前
10秒前
万能图书馆应助yyy采纳,获得10
10秒前
weiweiwu12完成签到,获得积分10
10秒前
夏xia完成签到,获得积分10
10秒前
arzw完成签到,获得积分10
10秒前
hdh完成签到,获得积分10
11秒前
锦鲤护体发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259