已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning for prediction of colorectal cancer outcome: a discovery and validation study

结直肠癌 队列 生物标志物 危险系数 卡培他滨 医学 阶段(地层学) 肿瘤科 内科学 癌症 置信区间 生物化学 生物 古生物学 化学
作者
Ole-Johan Skrede,Sepp de Raedt,Andreas Kleppe,Tarjei S. Hveem,Knut Liestøl,John Maddison,Hanne A. Askautrud,Manohar Pradhan,John Arne Nesheim,Fritz Albregtsen,Inger Nina Farstad,Enric Domingo,David N. Church,Arild Nesbakken,Neil A. Shepherd,Ian Tomlinson,Rachel Kerr,Marco Novelli,David J. Kerr,Håvard E. Danielsen
出处
期刊:The Lancet [Elsevier BV]
卷期号:395 (10221): 350-360 被引量:487
标识
DOI:10.1016/s0140-6736(19)32998-8
摘要

Summary

Background

Improved markers of prognosis are needed to stratify patients with early-stage colorectal cancer to refine selection of adjuvant therapy. The aim of the present study was to develop a biomarker of patient outcome after primary colorectal cancer resection by directly analysing scanned conventional haematoxylin and eosin stained sections using deep learning.

Methods

More than 12 000 000 image tiles from patients with a distinctly good or poor disease outcome from four cohorts were used to train a total of ten convolutional neural networks, purpose-built for classifying supersized heterogeneous images. A prognostic biomarker integrating the ten networks was determined using patients with a non-distinct outcome. The marker was tested on 920 patients with slides prepared in the UK, and then independently validated according to a predefined protocol in 1122 patients treated with single-agent capecitabine using slides prepared in Norway. All cohorts included only patients with resectable tumours, and a formalin-fixed, paraffin-embedded tumour tissue block available for analysis. The primary outcome was cancer-specific survival.

Findings

828 patients from four cohorts had a distinct outcome and were used as a training cohort to obtain clear ground truth. 1645 patients had a non-distinct outcome and were used for tuning. The biomarker provided a hazard ratio for poor versus good prognosis of 3·84 (95% CI 2·72–5·43; p<0·0001) in the primary analysis of the validation cohort, and 3·04 (2·07–4·47; p<0·0001) after adjusting for established prognostic markers significant in univariable analyses of the same cohort, which were pN stage, pT stage, lymphatic invasion, and venous vascular invasion.

Interpretation

A clinically useful prognostic marker was developed using deep learning allied to digital scanning of conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in large, independent patient populations, correlates with and outperforms established molecular and morphological prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more intensive treatment regimes.

Funding

The Research Council of Norway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜宛亦完成签到 ,获得积分10
1秒前
0015发布了新的文献求助10
2秒前
3秒前
cdercder应助yo一天采纳,获得10
4秒前
l979l0完成签到 ,获得积分10
4秒前
生动安南发布了新的文献求助10
4秒前
占万声完成签到,获得积分10
5秒前
dumo应助liaofr采纳,获得50
7秒前
8秒前
8秒前
Evooolet发布了新的文献求助10
9秒前
月亮快打烊吖完成签到 ,获得积分10
10秒前
gui关闭了gui文献求助
12秒前
0015完成签到,获得积分20
13秒前
yangyang0606完成签到,获得积分10
13秒前
洪武发布了新的文献求助10
13秒前
14秒前
Booksiy2发布了新的文献求助10
14秒前
Lucas应助Abx采纳,获得10
16秒前
默11发布了新的文献求助10
18秒前
ziyuwang发布了新的文献求助10
18秒前
passion完成签到,获得积分10
22秒前
魔幻蓉完成签到 ,获得积分10
22秒前
24秒前
希望天下0贩的0应助Booksiy2采纳,获得10
24秒前
29秒前
斯文冷亦发布了新的文献求助10
34秒前
沉静的时光完成签到 ,获得积分10
37秒前
黑米粥发布了新的文献求助10
40秒前
开朗冬萱完成签到 ,获得积分10
40秒前
zzzzzz完成签到 ,获得积分10
40秒前
41秒前
kingwill应助老鼠爱吃fish采纳,获得50
42秒前
FashionBoy应助生动安南采纳,获得10
42秒前
可爱的函函应助xubee采纳,获得10
43秒前
坚强的紊完成签到,获得积分10
44秒前
Fisher发布了新的文献求助10
45秒前
坚强的紊发布了新的文献求助10
46秒前
50秒前
huan发布了新的文献求助10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3760793
求助须知:如何正确求助?哪些是违规求助? 3304661
关于积分的说明 10130559
捐赠科研通 3018504
什么是DOI,文献DOI怎么找? 1657701
邀请新用户注册赠送积分活动 791653
科研通“疑难数据库(出版商)”最低求助积分说明 754529