清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning for prediction of colorectal cancer outcome: a discovery and validation study

结直肠癌 队列 生物标志物 危险系数 卡培他滨 医学 阶段(地层学) 肿瘤科 内科学 癌症 置信区间 生物化学 生物 古生物学 化学
作者
Ole-Johan Skrede,Sepp de Raedt,Andreas Kleppe,Tarjei S. Hveem,Knut Liestöl,John Maddison,Hanne A. Askautrud,Manohar Pradhan,John Arne Nesheim,Fritz Albregtsen,Inger Nina Farstad,Enric Domingo,David N. Church,Arild Nesbakken,Neil A. Shepherd,Ian Tomlinson,Rachel Kerr,Marco Novelli,David J. Kerr,Håvard E. Danielsen
出处
期刊:The Lancet [Elsevier]
卷期号:395 (10221): 350-360 被引量:532
标识
DOI:10.1016/s0140-6736(19)32998-8
摘要

Summary

Background

Improved markers of prognosis are needed to stratify patients with early-stage colorectal cancer to refine selection of adjuvant therapy. The aim of the present study was to develop a biomarker of patient outcome after primary colorectal cancer resection by directly analysing scanned conventional haematoxylin and eosin stained sections using deep learning.

Methods

More than 12 000 000 image tiles from patients with a distinctly good or poor disease outcome from four cohorts were used to train a total of ten convolutional neural networks, purpose-built for classifying supersized heterogeneous images. A prognostic biomarker integrating the ten networks was determined using patients with a non-distinct outcome. The marker was tested on 920 patients with slides prepared in the UK, and then independently validated according to a predefined protocol in 1122 patients treated with single-agent capecitabine using slides prepared in Norway. All cohorts included only patients with resectable tumours, and a formalin-fixed, paraffin-embedded tumour tissue block available for analysis. The primary outcome was cancer-specific survival.

Findings

828 patients from four cohorts had a distinct outcome and were used as a training cohort to obtain clear ground truth. 1645 patients had a non-distinct outcome and were used for tuning. The biomarker provided a hazard ratio for poor versus good prognosis of 3·84 (95% CI 2·72–5·43; p<0·0001) in the primary analysis of the validation cohort, and 3·04 (2·07–4·47; p<0·0001) after adjusting for established prognostic markers significant in univariable analyses of the same cohort, which were pN stage, pT stage, lymphatic invasion, and venous vascular invasion.

Interpretation

A clinically useful prognostic marker was developed using deep learning allied to digital scanning of conventional haematoxylin and eosin stained tumour tissue sections. The assay has been extensively evaluated in large, independent patient populations, correlates with and outperforms established molecular and morphological prognostic markers, and gives consistent results across tumour and nodal stage. The biomarker stratified stage II and III patients into sufficiently distinct prognostic groups that potentially could be used to guide selection of adjuvant treatment by avoiding therapy in very low risk groups and identifying patients who would benefit from more intensive treatment regimes.

Funding

The Research Council of Norway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MM完成签到 ,获得积分10
1秒前
crystaler完成签到 ,获得积分10
6秒前
ninini完成签到 ,获得积分10
19秒前
聪慧的石头完成签到,获得积分10
22秒前
前行的灿完成签到 ,获得积分10
22秒前
33秒前
11完成签到 ,获得积分10
45秒前
我我我完成签到,获得积分10
48秒前
SciGPT应助孙哈哈采纳,获得10
1分钟前
myq完成签到 ,获得积分10
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
要减肥的婷冉完成签到,获得积分10
1分钟前
孙哈哈完成签到 ,获得积分10
1分钟前
new1完成签到,获得积分10
1分钟前
千早爱音应助danielle采纳,获得20
1分钟前
mzhang2完成签到 ,获得积分10
1分钟前
Haimian完成签到 ,获得积分0
2分钟前
荔枝励志完成签到 ,获得积分10
2分钟前
哈哈哈完成签到 ,获得积分10
2分钟前
不甜的唐完成签到,获得积分10
2分钟前
Jzhaoc580完成签到 ,获得积分10
2分钟前
3分钟前
司徒明雪完成签到,获得积分10
3分钟前
司徒明雪发布了新的文献求助10
3分钟前
nicolaslcq完成签到,获得积分0
3分钟前
七月星河完成签到 ,获得积分10
3分钟前
龙弟弟完成签到 ,获得积分10
3分钟前
开放凝珍完成签到 ,获得积分10
3分钟前
3分钟前
木木圆发布了新的文献求助10
3分钟前
3分钟前
土豆发布了新的文献求助10
3分钟前
端庄洪纲完成签到 ,获得积分10
3分钟前
Hien完成签到,获得积分10
4分钟前
richestchen完成签到,获得积分10
4分钟前
握瑾怀瑜完成签到 ,获得积分0
4分钟前
zxq完成签到 ,获得积分10
4分钟前
4分钟前
jerry完成签到 ,获得积分10
4分钟前
雨后完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5281547
求助须知:如何正确求助?哪些是违规求助? 4435887
关于积分的说明 13806800
捐赠科研通 4316184
什么是DOI,文献DOI怎么找? 2369138
邀请新用户注册赠送积分活动 1364474
关于科研通互助平台的介绍 1327903