光催化
吸附
化学工程
气凝胶
全氟辛酸
石墨烯
材料科学
量子点
成核
十二烷基硫酸钠
纳米技术
催化作用
化学
色谱法
有机化学
工程类
作者
Chao Zhu,Jinli Xu,Shuang Song,Jun Wang,Yungui Li,Renlan Liu,Yi Shen
标识
DOI:10.1016/j.scitotenv.2019.134275
摘要
With the pollution of perfluoroalkyl substances (PFASs) became increasingly serious, the researches focused on removal of PFASs by adsorption-photocatalysis method has attracted considerable attention. To make the catalyst TiO2 disperse uniformly as quantum dots onto hydrophobic surface which was liable to attract perfluorooctanoic acid (PFOA), the surfactant sodium dodecyl sulfate (SDS) were used in this work, which not only connected the hydrophilic TiCl3 to the hydrophobic sulfonated graphene (SG) nanosheets, but also behaved as the molecular template for controlled nucleation and growth of the nanostructured TiO2. After 3D SG-TiO2 QD nanosheets were fabricated, a series of 3D SG-TiO2 QD aerogels were self-assembled by ice-template. TiO2 uniformly distributed on the surface of SG aerogel at QD size level (2–3 nm) and the size of TiO2 could be effectively regulated by concentration of SDS. Compared with aggregated TiO2 material, 3D SG-TiO2 QD aerogels owned higher adsorption and photocatalytic performance. Benefiting from the hydrophobic surface of 3D SG as well as dispersed TiO2 QDs, 3D SG-TiO2 QD could enrich PFOA instantaneously (0.0381/s) and photocatalytic decomposed them effectively (1.898 E−4/s). PFOA degradation by hole and hydroxyl radicals proceeded via a stepwise mechanism. The column made of 3D SG-TiO2 QD could remove PFOA persistently in cycles of permeation. 3D SG-TiO2 QD possessed powerful adsorption-photocatalytic decomposition capability of PFOA and steady reusability performance. The present work highlights the individual roles and synergistic effect of TiO2 QD and 3D SG for effectively removing PFOA.
科研通智能强力驱动
Strongly Powered by AbleSci AI