A Linear Integer Programming Model for Fault Diagnosis in Active Distribution Systems With Bi-Directional Fault Monitoring Devices Installed

断层(地质) 整数规划 故障指示器 计算机科学 故障检测与隔离 断层模型 实时计算 线性规划 陷入故障 可靠性工程 工程类 算法 人工智能 电气工程 电子线路 地震学 地质学 执行机构
作者
Chongyu Wang,Kaiyuan Pang,Yan Xu,Fushuan Wen,Ivo Palu,Changsen Feng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 106452-106463 被引量:8
标识
DOI:10.1109/access.2020.2999519
摘要

With the extensive installation of intelligent electronic devices with bi-directional fault monitoring capabilities, richer fault direction information can be collected and utilized to achieve an accurate fault diagnosis. In this paper, we consider the fault diagnosis problem in active distribution systems with distributed generators connected, such as rotating electrical machine power sources and centralized inverter interfaced renewable energy resources. The fault diagnosis problem is modeled as a linear integer programming problem with an objective to minimize the numbers of fault zones and false alarms. A novel functional form is derived to capture the expected alarms sent by bi-directional fault monitoring devices to be compared with the actual alarms received by the dispatch center. Uncertainties in both the monitoring and communication stages are considered in the model by formulating the numbers of false alarms in the objective function. Three types of suspected false alarms can be detected: “missing alarms”, “distorted alarms”, and “reverse alarms”. By solving the developed optimization model for fault diagnosis, false alarms and suspected fault zones can be found. Case studies in a modified IEEE 33-bus system and a 55-bus system in Guangzhou, China are carried out in several different scenarios with multiple faults to demonstrate the performance of the proposed model. Numerical tests show that the proposed approach is superior in computational time such that it can be used for real-time fault diagnosis in active distribution systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂瑛发布了新的文献求助10
1秒前
在水一方应助不对也没错采纳,获得10
1秒前
小飞发布了新的文献求助30
2秒前
2秒前
豪哥大大完成签到,获得积分10
3秒前
3秒前
汉堡包应助神勇的曼文采纳,获得10
4秒前
田様应助顾闭月采纳,获得10
4秒前
新的心跳发布了新的文献求助10
4秒前
白石杏发布了新的文献求助10
4秒前
风中寄云发布了新的文献求助10
5秒前
langzi完成签到,获得积分10
7秒前
haifang完成签到,获得积分10
7秒前
大个应助zhui采纳,获得10
7秒前
哎呀完成签到 ,获得积分10
8秒前
9秒前
哈哈哈哈发布了新的文献求助10
9秒前
9秒前
Wang完成签到,获得积分10
9秒前
请叫我风吹麦浪应助kevin采纳,获得20
10秒前
10秒前
10秒前
吃点水果保护局完成签到 ,获得积分10
11秒前
gs完成签到,获得积分10
11秒前
Xyyy完成签到,获得积分10
11秒前
12秒前
白石杏完成签到,获得积分10
14秒前
ll200207完成签到,获得积分10
15秒前
凶狠的乐巧完成签到,获得积分10
15秒前
Lin发布了新的文献求助10
16秒前
三七发布了新的文献求助10
16秒前
16秒前
鸣隐发布了新的文献求助10
16秒前
17秒前
17秒前
软豆皮完成签到,获得积分10
17秒前
lan完成签到,获得积分10
18秒前
英姑应助松松果采纳,获得10
18秒前
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794