Coastal Hazards System: A Probabilistic Coastal Hazard Analysis Framework

危害 危害分析 自然灾害 地质灾害 海岸管理 沿海洪水 洪水(心理学) 海岸侵蚀 风险评估 海岸带
作者
Norberto C. Nadal-Caraballo,Madison O. Campbell,Victor M. Gonzalez,Marissa J. Torres,Jeffrey A. Melby,Alexandros A. Taflanidis
出处
期刊:Journal of Coastal Research [BioOne (Coastal Education and Research Foundation)]
卷期号:95: 1211-1216 被引量:9
标识
DOI:10.2112/si95-235.1
摘要

Nadal-Caraballo, N.C.; Campbell, M.O.; Gonzalez, V.M.; Torres, M.J.; Melby, J.A., and Taflanidis, A.A., 2020. Coastal Hazards System: A Probabilistic Coastal Hazard Analysis Framework. In: Malvarez, G. and Navas, F. (eds.), Global Coastal Issues of 2020. Journal of Coastal Research, Special Issue No. 95, pp. 1211-1216. Coconut Creek (Florida), ISSN 0749-0208.Coastal hazards such as storm surge, waves, currents, wind, and rainfall associated with extratropical and tropical cyclones (e.g., hurricanes) can have devastating effects and threaten the lives of millions of people living along the world's coastlines. This has led to the development of the Coastal Hazards System (CHS), an ambitious program with the primary goal of quantifying extreme coastal hazards due to both tropical and extratropical cyclones. The CHS currently covers all U.S. hurricane-prone coastlines along the Gulf of Mexico, the Atlantic seaboard, Puerto Rico, and the U.S. Virgin Islands, as well as regions affected only by extratropical storms like the Great Lakes. The Probabilistic Coastal Hazard Analysis (PCHA) is an innovative statistical and probabilistic framework that serves as the foundation of the CHS. This framework includes comprehensive characterization of storm climatology, high-resolution numerical modeling, and advanced joint probability analysis of atmospheric forcing and primary storm responses, including associated aleatory and epistemic uncertainties. New PCHA advancements overcome limitations of previous joint probability methods by integrating meta-Gaussian copula for the computation of storm probabilities, spatially-varying bias and uncertainty quantification, and Gaussian process metamodel (GPM) based on existing CHS synthetic tropical cyclones. GPM emulates the response of computationally-expensive hydrodynamic models and enables the generation of augmented tropical cyclone suites, consisting of up to millions of storms, for optimal coverage of the parameter and probability spaces. The CHS also includes a database and a web-based data mining and visualization system for public distribution of high-fidelity probabilistic, atmospheric and hydrodynamic modeling results. PCHA results are distributed along with the corresponding metadata, in self-describing data formats for easy and efficient use by engineers, planners, economists, emergency managers, and researchers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lunan完成签到,获得积分10
2秒前
2秒前
上官若男应助甜橙采纳,获得10
4秒前
lunan发布了新的文献求助10
5秒前
小鸟芋圆露露完成签到 ,获得积分10
5秒前
6秒前
xixi完成签到 ,获得积分10
6秒前
科研通AI2S应助红箭烟雨采纳,获得10
8秒前
9秒前
10秒前
11秒前
sdbz001完成签到,获得积分10
11秒前
甜橙完成签到,获得积分10
11秒前
13秒前
14秒前
骨小梁发布了新的文献求助10
15秒前
甜橙发布了新的文献求助10
16秒前
muzi发布了新的文献求助10
16秒前
情怀应助深山何处钟声鸣采纳,获得10
18秒前
冬瓜完成签到 ,获得积分10
18秒前
丘比特应助超文献采纳,获得10
21秒前
23秒前
24秒前
25秒前
阿林琳琳完成签到 ,获得积分10
26秒前
科目三应助sisisij采纳,获得10
29秒前
CodeCraft应助LuciusHe采纳,获得10
31秒前
31秒前
NZH发布了新的文献求助10
32秒前
33秒前
研友_8DAv0L发布了新的文献求助10
33秒前
zhangpeng完成签到,获得积分10
35秒前
wangayting发布了新的文献求助30
35秒前
36秒前
无花果应助小郭采纳,获得20
36秒前
38秒前
隐形之玉发布了新的文献求助10
38秒前
38秒前
NZH完成签到,获得积分10
38秒前
sisisij发布了新的文献求助10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787054
捐赠科研通 2444818
什么是DOI,文献DOI怎么找? 1300043
科研通“疑难数据库(出版商)”最低求助积分说明 625784
版权声明 601023