纳米晶
卤化物
材料科学
结晶度
量子产额
胶体
钙钛矿(结构)
金属卤化物
金属
化学
半最大全宽
激子
量子点
纳米技术
光致发光
无机化学
结晶学
物理化学
光电子学
光学
复合材料
物理
荧光
冶金
量子力学
作者
Yanyan Li,Parth Vashishtha,Zhicong Zhou,Zhi Li,Sunil B. Shivarudraiah,Chao Ma,Junkai Liu,Kam Sing Wong,Haibin Su,Jonathan E. Halpert
标识
DOI:10.1021/acs.chemmater.0c00280
摘要
Lead halide perovskite nanocrystals (NCs) have shown remarkable properties for emission applications, but their toxicity and instability are a hindrance to many commercial uses. Herein, we report the synthesis of lead-free all-inorganic Cs3Cu2X5 (X = I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals as members of the metal–metal halide family of materials. These nanocrystals have uniform sizes less than 10 nm in diameter and show excellent optical properties, including composition-tunable emission spectra over the spectral region of 440–530 nm; high photoluminescence quantum yields of ∼100, 20, and 30% for X = Cl, Br, and I, respectively; and large effective Stokes shifts of over 100 nm for all species. Nanocrystals are synthesized by a room temperature, antisolvent method, but the precursors and ligands are also shown to be effective in hot -injection synthesis. Pure- and mixed-halide materials show tunable emission with the halide concentration, with a large fwhm of 80–110 nm due to a widely reported exciton self-trapping emission mechanism. Notably, the Cu3Cu2Cl5 NCs exhibit a near-unity quantum yield with an emission at 520 nm, high crystallinity, and good stability. These materials can be processed and maintained in adequately stable dispersions to enable inkjet printing of these materials into arbitrary patterns. These results indicate that cesium copper chloride NCs may have great potential for the future display or lighting applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI