计算机科学
网络规划与设计
简单(哲学)
空格(标点符号)
参数化(大气建模)
工程设计过程
功能(生物学)
设计过程
过程(计算)
航程(航空)
分布式计算
理论计算机科学
计算机体系结构
计算机网络
在制品
工程类
程序设计语言
航空航天工程
操作系统
哲学
物理
认识论
生物
机械工程
进化生物学
辐射传输
量子力学
运营管理
作者
Ilija Radosavovic,Raj Prateek Kosaraju,Ross Girshick,Kai He,Piotr Dollár
出处
期刊:Computer Vision and Pattern Recognition
日期:2020-06-01
被引量:922
标识
DOI:10.1109/cvpr42600.2020.01044
摘要
In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network design and discover design principles that generalize across settings. Instead of focusing on designing individual network instances, we design network design spaces that parametrize populations of networks. The overall process is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at interesting findings that do not match the current practice of network design. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs.
科研通智能强力驱动
Strongly Powered by AbleSci AI