Cross-Scene Deep Transfer Learning With Spectral Feature Adaptation for Hyperspectral Image Classification

模式识别(心理学) 深度学习 卷积神经网络 特征(语言学) 上下文图像分类 判别式 支持向量机 计算机视觉 人工神经网络 特征学习 多光谱图像
作者
Chongxiao Zhong,Junping Zhang,Sifan Wu,Ye Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 2861-2873 被引量:5
标识
DOI:10.1109/jstars.2020.2999386
摘要

The small size of labeled samples has always been one of the great challenges in hyperspectral image (HSI) classification. Recently, cross-scene transfer learning has been developed to solve this problem by utilizing auxiliary samples of a relevant scene. However, the disparity between hyperspectral datasets acquired by different sensors is a tricky problem which is hard to overcome. In this article, we put forward a cross-scene deep transfer learning method with spectral feature adaptation for HSI classification, which transfers the effective contents from source scene to target scene. The proposed framework contains two parts. First, the distribution differences of spectral dimension between source domain and target domain are reduced through a joint probability distribution adaptation approach. Then, a multiscale spectral-spatial unified network with two-branch architecture and a multiscale bank is designed to extract discriminating features of HSI adequately. Finally, classification of the target image is achieved by applying a model-based deep transfer learning strategy. Experiments conducted on several real hyperspectral datasets demonstrate that the proposed approach can explicitly narrow the disparity between HSIs captured by different sensors and yield ideal classification results of the target HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
l1844852731完成签到 ,获得积分10
1秒前
小二郎应助老迟到的幼枫采纳,获得10
1秒前
深情隶完成签到,获得积分10
1秒前
AN发布了新的文献求助10
1秒前
向晚完成签到 ,获得积分10
2秒前
2秒前
打打应助JBY采纳,获得10
3秒前
香蕉觅云应助lvxinda采纳,获得10
3秒前
3秒前
Zzz完成签到,获得积分10
4秒前
HmH完成签到,获得积分10
4秒前
佳佳完成签到,获得积分10
4秒前
情怀应助MoonByMoon采纳,获得10
4秒前
123发布了新的文献求助30
4秒前
4秒前
5秒前
ddddansu完成签到,获得积分10
5秒前
科研通AI5应助美丽秋蝶采纳,获得10
5秒前
沈沈完成签到,获得积分10
6秒前
jing发布了新的文献求助10
6秒前
wxr完成签到 ,获得积分10
6秒前
6秒前
8秒前
一棵完成签到 ,获得积分10
8秒前
qiao完成签到,获得积分10
8秒前
8秒前
汉堡包应助Pendulium采纳,获得10
9秒前
hdbys完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
周轩完成签到,获得积分10
11秒前
liusj完成签到,获得积分10
11秒前
ss发布了新的文献求助10
11秒前
Miyo完成签到,获得积分10
12秒前
12秒前
12秒前
高贵的帽子完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097673
求助须知:如何正确求助?哪些是违规求助? 4310117
关于积分的说明 13429226
捐赠科研通 4137515
什么是DOI,文献DOI怎么找? 2266700
邀请新用户注册赠送积分活动 1269881
关于科研通互助平台的介绍 1206170