Cross-Scene Deep Transfer Learning With Spectral Feature Adaptation for Hyperspectral Image Classification

模式识别(心理学) 深度学习 卷积神经网络 特征(语言学) 上下文图像分类 判别式 支持向量机 计算机视觉 人工神经网络 特征学习 多光谱图像
作者
Chongxiao Zhong,Junping Zhang,Sifan Wu,Ye Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:13: 2861-2873 被引量:5
标识
DOI:10.1109/jstars.2020.2999386
摘要

The small size of labeled samples has always been one of the great challenges in hyperspectral image (HSI) classification. Recently, cross-scene transfer learning has been developed to solve this problem by utilizing auxiliary samples of a relevant scene. However, the disparity between hyperspectral datasets acquired by different sensors is a tricky problem which is hard to overcome. In this article, we put forward a cross-scene deep transfer learning method with spectral feature adaptation for HSI classification, which transfers the effective contents from source scene to target scene. The proposed framework contains two parts. First, the distribution differences of spectral dimension between source domain and target domain are reduced through a joint probability distribution adaptation approach. Then, a multiscale spectral-spatial unified network with two-branch architecture and a multiscale bank is designed to extract discriminating features of HSI adequately. Finally, classification of the target image is achieved by applying a model-based deep transfer learning strategy. Experiments conducted on several real hyperspectral datasets demonstrate that the proposed approach can explicitly narrow the disparity between HSIs captured by different sensors and yield ideal classification results of the target HSI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然芯完成签到,获得积分20
刚刚
研友_VZG7GZ应助小赵采纳,获得10
1秒前
Zll发布了新的文献求助10
1秒前
舒心的面包完成签到,获得积分10
1秒前
Owen应助长情的不言采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
毛小驴完成签到,获得积分10
3秒前
Lucky小M发布了新的文献求助20
4秒前
4秒前
4秒前
4秒前
cebr发布了新的文献求助30
5秒前
DocRyan完成签到,获得积分10
6秒前
6秒前
6秒前
九月发布了新的文献求助10
6秒前
Orange应助Phoebe3114采纳,获得10
6秒前
王灿灿发布了新的文献求助10
7秒前
Menand完成签到,获得积分10
7秒前
7秒前
7秒前
卤味狮子头完成签到,获得积分10
7秒前
save发布了新的文献求助10
7秒前
不安的夜柳完成签到,获得积分10
8秒前
打打应助笠昂采纳,获得10
8秒前
ZYSNNNN关注了科研通微信公众号
8秒前
库三金完成签到,获得积分10
8秒前
卓卓完成签到,获得积分20
9秒前
DocRyan发布了新的文献求助10
9秒前
一枝杷枇发布了新的文献求助10
9秒前
来日方长发布了新的文献求助10
10秒前
七少爷发布了新的文献求助10
10秒前
ss完成签到,获得积分10
10秒前
不配.应助舒服的荆采纳,获得10
11秒前
祎思完成签到,获得积分10
11秒前
11秒前
littleJ完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152571
求助须知:如何正确求助?哪些是违规求助? 2803797
关于积分的说明 7855643
捐赠科研通 2461450
什么是DOI,文献DOI怎么找? 1310300
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782