Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices

串联 太阳能电池 光电子学 材料科学 能量转换效率 太阳能电池理论 载流子 等离子太阳电池 太阳能电池效率 聚合物太阳能电池 复合材料
作者
Yu Cao,Xinyun Zhu,Jiahao Jiang,Chaoying Liu,Jing Zhou,Jian Ni,Jian-Jun Zhang,Jinbo Pang
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:206: 110279-110279 被引量:94
标识
DOI:10.1016/j.solmat.2019.110279
摘要

Sb2S3 thin-film solar cells have recently gained attention due to their low cost, low toxicity, and simple fabrication. However, there is still plenty of room to improve their performance. It is known that efficient carrier transport is essential for high performance Sb2S3 solar cells, which, unfortunately, is difficult to characterize by conventional testing methods. Therefore, the carrier transport process in Sb2S3 solar cells was studied here using a theoretical simulation. The results show that high solar performances can be achieved with a wide parameter window for selecting the electron transport layer as well as the hole transport layer, viz., with a conduction band minimum of the electron transport layer (−4.4 eV < CBM < −3.2 eV), and a valence band maximum of the hole transport layer (−5.2 eV > VBM > −6.4 eV). Here the interfacial potential barrier become negligible and as a consequence electrons and holes cross at ease, which guarantee the good device performance. Indeed, a Sb2S3 solar cell with a high power conversion efficiency (PCE) can be obtained by ensuring that the carrier transport and collection are unimpeded in the device, i.e., the Sb2S3-based single junction solar cells shows high efficiency of 19.53%. Furthermore, we found that optimized Sb2S3 solar cells are particularly suitable for use as the top cell of tandem structure solar cells. Thus, a Sb2S3/Sb2Se3 double junction solar cell structure was proposed. With a 0.5 μm thick Sb2S3 absorber, double junction solar cells could achieve a theoretical efficiency as high as 26.64%. Our results based on the rotational design of bandgap alignment provide a general guide rule for selecting the optimal electron transport layer as well as the hole transport layer to boost the power conversion efficiency for Sb2S3 solar cells up to its theoretical limit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duxh123发布了新的文献求助50
1秒前
科研学渣请大神带完成签到,获得积分10
1秒前
2秒前
共享精神应助野格三明治采纳,获得10
2秒前
幸运的科研小狗完成签到,获得积分10
3秒前
田様应助奕颖王采纳,获得10
3秒前
3秒前
迎海完成签到,获得积分10
3秒前
LC发布了新的文献求助10
4秒前
summer发布了新的文献求助10
4秒前
JamesPei应助唯美采纳,获得10
5秒前
今后应助CLF采纳,获得10
5秒前
巫诶发布了新的文献求助10
5秒前
5秒前
6秒前
轩辕德地完成签到,获得积分10
6秒前
HEIKU应助Doctor_Peng采纳,获得10
6秒前
Likx完成签到,获得积分10
7秒前
欣喜电源完成签到,获得积分10
7秒前
无心的若山完成签到,获得积分10
8秒前
呆萌蘑菇科研人完成签到,获得积分10
8秒前
晴天发布了新的文献求助20
8秒前
笑笑应助美满的小甜瓜采纳,获得10
8秒前
完美世界应助djm采纳,获得20
8秒前
sad完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
小半完成签到,获得积分10
10秒前
yang完成签到,获得积分10
11秒前
NiLou完成签到,获得积分10
11秒前
wangdayun完成签到,获得积分10
11秒前
今天不学习明天变垃圾完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
14秒前
Lemon完成签到 ,获得积分10
14秒前
14秒前
刘大可完成签到,获得积分10
16秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143062
求助须知:如何正确求助?哪些是违规求助? 2794082
关于积分的说明 7809850
捐赠科研通 2450395
什么是DOI,文献DOI怎么找? 1303818
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384