Revealing the correlation between structure evolution and electrochemical performance of high-voltage lithium cobalt oxide

电化学 材料科学 锂(药物) 化学物理 氧化钴 阴极 相变 相(物质) 氧化物 纳米技术 衍射 电极 离子 化学 物理化学 热力学 光学 冶金 物理 内分泌学 有机化学 医学
作者
Jiajia Wan,Jianping Zhu,Yuxuan Xiang,Guiming Zhong,Xiangsi Liu,Yixiao Li,Kelvin H. L. Zhang,Chen Hong,Jianming Zheng,Kai Wang,Yong Yang
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:54: 786-794 被引量:31
标识
DOI:10.1016/j.jechem.2020.06.027
摘要

Lithium cobalt oxide (LCO) is the dominating cathode materials for lithium-ion batteries (LIBs) deployed in consumer electronic devices for its superior volumetric energy density and electrochemical performances. The constantly increasing demands of higher energy density urge to develop high-voltage LCO via a variety of strategies. However, the corresponding modification mechanism, especially the influence of the long- and short-range structural transitions at high-voltage on electrochemical performance, is still not well understood and needs further exploration. Based on ss-NMR, in-situ X-ray diffraction, and electrochemical performance results, it is revealed that the H3 to H1-3 phase transition dictates the structural reversibility and stability of LCO, thereby determining the electrochemical performance. The introduction of La and Al ions could postpone the appearance of H1-3 phase and induce various types of local environments to alleviate the volume variation at the atomic level, leading to better reversibility of the H1-3 phase and smaller lattice strain, and significantly improved cycle performance. Such a comprehensive long-range, local, and electronic structure characterization enables an in-depth understanding of the structural evolution of LCO, providing a guiding principle for developing high-voltage LCO for high energy density LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜菜发布了新的文献求助10
1秒前
冰冰发布了新的文献求助10
1秒前
3秒前
狗不理发布了新的文献求助10
3秒前
帅仁123完成签到,获得积分20
3秒前
晴晴完成签到,获得积分10
4秒前
书生完成签到,获得积分10
4秒前
在水一方应助星星采纳,获得10
4秒前
4秒前
Rachel完成签到,获得积分20
5秒前
SHIROKO完成签到,获得积分10
5秒前
nns完成签到,获得积分10
5秒前
派大星发布了新的文献求助10
6秒前
兜兜窦完成签到,获得积分10
6秒前
seven发布了新的文献求助10
6秒前
danny发布了新的文献求助10
7秒前
7秒前
深情安青应助贪玩的听荷采纳,获得10
8秒前
文艺的又亦完成签到,获得积分10
8秒前
黄黄完成签到,获得积分0
8秒前
顺利紫山发布了新的文献求助10
9秒前
西红柿完成签到,获得积分0
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
帕尼灬尼发布了新的文献求助10
9秒前
大力老木发布了新的文献求助10
9秒前
10秒前
10秒前
lkjh驳回了佳佳应助
10秒前
11秒前
11秒前
愉快绿蓉关注了科研通微信公众号
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635