A Deep-Learning Diagnostic Support System for the Detection of COVID-19 Using Chest Radiographs

2019年冠状病毒病(COVID-19) 射线照相术 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 医学 放射科 核医学 病毒学 病理 爆发 传染病(医学专业) 疾病
作者
Matthias Fontanellaz,Lukas Ebner,Adrian Thomas Huber,Alan Peters,Laura Löbelenz,Cynthia Hourscht,Jeremias Klaus,Jaro Munz,Thomas D. Ruder,Dionysios Drakopoulos,Dominik Sieron,Elias Primetis,Johannes T. Heverhagen,Stavroula Mougiakakou,Andreas Christe
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:56 (6): 348-356 被引量:16
标识
DOI:10.1097/rli.0000000000000748
摘要

The aim of this study was to compare a diagnosis support system to detect COVID-19 pneumonia on chest radiographs (CXRs) against radiologists of various levels of expertise in chest imaging. MATERIALS AND METHODS: Five publicly available databases comprising normal CXR, confirmed COVID-19 pneumonia cases, and other pneumonias were used. After the harmonization of the data, the training set included 7966 normal cases, 5451 with other pneumonia, and 258 CXRs with COVID-19 pneumonia, whereas in the testing data set, each category was represented by 100 cases. Eleven blinded radiologists with various levels of expertise independently read the testing data set. The data were analyzed separately with the newly proposed artificial intelligence-based system and by consultant radiologists and residents, with respect to positive predictive value (PPV), sensitivity, and F-score (harmonic mean for PPV and sensitivity). The χ test was used to compare the sensitivity, specificity, accuracy, PPV, and F-scores of the readers and the system. RESULTS: The proposed system achieved higher overall diagnostic accuracy (94.3%) than the radiologists (61.4% ± 5.3%). The radiologists reached average sensitivities for normal CXR, other type of pneumonia, and COVID-19 pneumonia of 85.0% ± 12.8%, 60.1% ± 12.2%, and 53.2% ± 11.2%, respectively, which were significantly lower than the results achieved by the algorithm (98.0%, 88.0%, and 97.0%; P < 0.00032). The mean PPVs for all 11 radiologists for the 3 categories were 82.4%, 59.0%, and 59.0% for the healthy, other pneumonia, and COVID-19 pneumonia, respectively, resulting in an F-score of 65.5% ± 12.4%, which was significantly lower than the F-score of the algorithm (94.3% ± 2.0%, P < 0.00001). When other pneumonia and COVID-19 pneumonia cases were pooled, the proposed system reached an accuracy of 95.7% for any pathology and the radiologists, 88.8%. The overall accuracy of consultants did not vary significantly compared with residents (65.0% ± 5.8% vs 67.4% ± 4.2%); however, consultants detected significantly more COVID-19 pneumonia cases (P = 0.008) and less healthy cases (P < 0.00001). CONCLUSIONS: The system showed robust accuracy for COVID-19 pneumonia detection on CXR and surpassed radiologists at various training levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助麦子采纳,获得10
1秒前
gym完成签到,获得积分10
1秒前
云菲菲完成签到,获得积分20
2秒前
香蕉觅云应助失眠奥特曼采纳,获得10
3秒前
神勇的板栗完成签到,获得积分20
3秒前
luo2完成签到,获得积分20
3秒前
4秒前
4秒前
落寞依珊应助麒麟采纳,获得20
5秒前
5秒前
6秒前
健康的雁开完成签到,获得积分20
6秒前
李星啸发布了新的文献求助10
6秒前
wise111发布了新的文献求助10
6秒前
px发布了新的文献求助10
7秒前
打打应助EthanChan采纳,获得10
7秒前
8秒前
Owen应助小巧富采纳,获得10
9秒前
领导范儿应助Marina采纳,获得20
9秒前
leeeeee完成签到,获得积分10
10秒前
鸣笛应助优美电脑采纳,获得80
11秒前
11秒前
领导范儿应助qyang采纳,获得10
11秒前
酷炫元风发布了新的文献求助10
11秒前
留白留白完成签到,获得积分10
12秒前
gym发布了新的文献求助10
12秒前
yhhy完成签到,获得积分10
13秒前
14秒前
蝈蝈发布了新的文献求助10
16秒前
xnshina发布了新的文献求助50
16秒前
17秒前
yyh发布了新的文献求助30
17秒前
新科研熊完成签到,获得积分10
18秒前
18秒前
ta发布了新的文献求助100
19秒前
科研通AI5应助酷炫元风采纳,获得10
19秒前
大气思菱完成签到,获得积分10
19秒前
青青子衿完成签到,获得积分10
19秒前
Elanie完成签到,获得积分10
20秒前
天神完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629