A Deep-Learning Diagnostic Support System for the Detection of COVID-19 Using Chest Radiographs

2019年冠状病毒病(COVID-19) 射线照相术 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 医学 放射科 核医学 病毒学 病理 爆发 传染病(医学专业) 疾病
作者
Matthias Fontanellaz,Lukas Ebner,Adrian Thomas Huber,Alan Peters,Laura Löbelenz,Cynthia Hourscht,Jeremias Klaus,Jaro Munz,Thomas D. Ruder,Dionysios Drakopoulos,Dominik Sieron,Elias Primetis,Johannes T. Heverhagen,Stavroula Mougiakakou,Andreas Christe
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:56 (6): 348-356 被引量:16
标识
DOI:10.1097/rli.0000000000000748
摘要

The aim of this study was to compare a diagnosis support system to detect COVID-19 pneumonia on chest radiographs (CXRs) against radiologists of various levels of expertise in chest imaging. MATERIALS AND METHODS: Five publicly available databases comprising normal CXR, confirmed COVID-19 pneumonia cases, and other pneumonias were used. After the harmonization of the data, the training set included 7966 normal cases, 5451 with other pneumonia, and 258 CXRs with COVID-19 pneumonia, whereas in the testing data set, each category was represented by 100 cases. Eleven blinded radiologists with various levels of expertise independently read the testing data set. The data were analyzed separately with the newly proposed artificial intelligence-based system and by consultant radiologists and residents, with respect to positive predictive value (PPV), sensitivity, and F-score (harmonic mean for PPV and sensitivity). The χ test was used to compare the sensitivity, specificity, accuracy, PPV, and F-scores of the readers and the system. RESULTS: The proposed system achieved higher overall diagnostic accuracy (94.3%) than the radiologists (61.4% ± 5.3%). The radiologists reached average sensitivities for normal CXR, other type of pneumonia, and COVID-19 pneumonia of 85.0% ± 12.8%, 60.1% ± 12.2%, and 53.2% ± 11.2%, respectively, which were significantly lower than the results achieved by the algorithm (98.0%, 88.0%, and 97.0%; P < 0.00032). The mean PPVs for all 11 radiologists for the 3 categories were 82.4%, 59.0%, and 59.0% for the healthy, other pneumonia, and COVID-19 pneumonia, respectively, resulting in an F-score of 65.5% ± 12.4%, which was significantly lower than the F-score of the algorithm (94.3% ± 2.0%, P < 0.00001). When other pneumonia and COVID-19 pneumonia cases were pooled, the proposed system reached an accuracy of 95.7% for any pathology and the radiologists, 88.8%. The overall accuracy of consultants did not vary significantly compared with residents (65.0% ± 5.8% vs 67.4% ± 4.2%); however, consultants detected significantly more COVID-19 pneumonia cases (P = 0.008) and less healthy cases (P < 0.00001). CONCLUSIONS: The system showed robust accuracy for COVID-19 pneumonia detection on CXR and surpassed radiologists at various training levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑小七发布了新的文献求助10
刚刚
Tianxu Li完成签到,获得积分10
1秒前
1秒前
九川发布了新的文献求助10
2秒前
Lucas应助无限的隶采纳,获得10
2秒前
胡雅琴完成签到,获得积分10
2秒前
sakurai完成签到,获得积分10
3秒前
清歌扶酒关注了科研通微信公众号
3秒前
二尖瓣后叶举报ww求助涉嫌违规
3秒前
烟花应助轻松笙采纳,获得10
3秒前
沉默凡桃完成签到,获得积分10
4秒前
4秒前
luuuuuing发布了新的文献求助30
4秒前
啦啦啦完成签到,获得积分10
4秒前
小可发布了新的文献求助10
4秒前
5秒前
LKGG完成签到 ,获得积分10
5秒前
6秒前
6秒前
6秒前
周士乐发布了新的文献求助10
6秒前
Sunshine发布了新的文献求助10
6秒前
呼吸之野完成签到,获得积分10
7秒前
害怕的小懒虫完成签到,获得积分10
7秒前
思源应助Nefelibata采纳,获得10
8秒前
妮儿发布了新的文献求助10
8秒前
BareBear应助rosa采纳,获得10
8秒前
沉默凡桃发布了新的文献求助10
9秒前
Orange应助9℃采纳,获得10
9秒前
9秒前
一只橘子完成签到 ,获得积分10
9秒前
10秒前
韭黄发布了新的文献求助10
10秒前
西瓜发布了新的文献求助10
10秒前
Ll发布了新的文献求助10
10秒前
10秒前
wcy关注了科研通微信公众号
10秒前
11秒前
11秒前
CipherSage应助爱喝冰可乐采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759