A Deep-Learning Diagnostic Support System for the Detection of COVID-19 Using Chest Radiographs

2019年冠状病毒病(COVID-19) 射线照相术 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 2019-20冠状病毒爆发 医学 放射科 核医学 病毒学 病理 爆发 传染病(医学专业) 疾病
作者
Matthias Fontanellaz,Lukas Ebner,Adrian Thomas Huber,Alan Peters,Laura Löbelenz,Cynthia Hourscht,Jeremias Klaus,Jaro Munz,Thomas D. Ruder,Dionysios Drakopoulos,Dominik Sieron,Elias Primetis,Johannes T. Heverhagen,Stavroula Mougiakakou,Andreas Christe
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:56 (6): 348-356 被引量:16
标识
DOI:10.1097/rli.0000000000000748
摘要

The aim of this study was to compare a diagnosis support system to detect COVID-19 pneumonia on chest radiographs (CXRs) against radiologists of various levels of expertise in chest imaging. MATERIALS AND METHODS: Five publicly available databases comprising normal CXR, confirmed COVID-19 pneumonia cases, and other pneumonias were used. After the harmonization of the data, the training set included 7966 normal cases, 5451 with other pneumonia, and 258 CXRs with COVID-19 pneumonia, whereas in the testing data set, each category was represented by 100 cases. Eleven blinded radiologists with various levels of expertise independently read the testing data set. The data were analyzed separately with the newly proposed artificial intelligence-based system and by consultant radiologists and residents, with respect to positive predictive value (PPV), sensitivity, and F-score (harmonic mean for PPV and sensitivity). The χ test was used to compare the sensitivity, specificity, accuracy, PPV, and F-scores of the readers and the system. RESULTS: The proposed system achieved higher overall diagnostic accuracy (94.3%) than the radiologists (61.4% ± 5.3%). The radiologists reached average sensitivities for normal CXR, other type of pneumonia, and COVID-19 pneumonia of 85.0% ± 12.8%, 60.1% ± 12.2%, and 53.2% ± 11.2%, respectively, which were significantly lower than the results achieved by the algorithm (98.0%, 88.0%, and 97.0%; P < 0.00032). The mean PPVs for all 11 radiologists for the 3 categories were 82.4%, 59.0%, and 59.0% for the healthy, other pneumonia, and COVID-19 pneumonia, respectively, resulting in an F-score of 65.5% ± 12.4%, which was significantly lower than the F-score of the algorithm (94.3% ± 2.0%, P < 0.00001). When other pneumonia and COVID-19 pneumonia cases were pooled, the proposed system reached an accuracy of 95.7% for any pathology and the radiologists, 88.8%. The overall accuracy of consultants did not vary significantly compared with residents (65.0% ± 5.8% vs 67.4% ± 4.2%); however, consultants detected significantly more COVID-19 pneumonia cases (P = 0.008) and less healthy cases (P < 0.00001). CONCLUSIONS: The system showed robust accuracy for COVID-19 pneumonia detection on CXR and surpassed radiologists at various training levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thirteen完成签到 ,获得积分10
1秒前
2333完成签到,获得积分20
2秒前
含糊的白开水完成签到,获得积分20
3秒前
SunGuangkai发布了新的文献求助200
3秒前
杨凡发布了新的文献求助10
4秒前
peiqi佩奇完成签到,获得积分20
5秒前
科研通AI2S应助小绵羊采纳,获得10
8秒前
8秒前
lili发布了新的文献求助10
11秒前
11秒前
Ava应助xima采纳,获得10
12秒前
36456657应助勤恳冰彤采纳,获得10
13秒前
13秒前
Hou完成签到,获得积分10
14秒前
17秒前
18秒前
洁洁酱发布了新的文献求助10
19秒前
lili完成签到,获得积分10
19秒前
小恐龙完成签到,获得积分10
19秒前
20秒前
20秒前
ZC完成签到,获得积分10
22秒前
23秒前
hanyang965发布了新的文献求助10
23秒前
zhangshenlan完成签到 ,获得积分10
26秒前
xima发布了新的文献求助10
26秒前
syk应助彭佳丽采纳,获得10
29秒前
小羊完成签到,获得积分10
30秒前
33秒前
33秒前
俊逸的盛男完成签到 ,获得积分10
34秒前
li锂狸应助222520zys采纳,获得10
34秒前
35秒前
丘比特应助饱满的雨泽采纳,获得10
37秒前
李剑鸿发布了新的文献求助200
39秒前
消潇发布了新的文献求助30
40秒前
把握当下发布了新的文献求助10
40秒前
41秒前
神经蛙完成签到 ,获得积分10
41秒前
呆呆要努力完成签到 ,获得积分10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462