Physiologically based pharmacokinetic (PBPK) modeling of RNAi therapeutics: Opportunities and challenges

基于生理学的药代动力学模型 药代动力学 RNA干扰 背景(考古学) 药理学 计算生物学 计算机科学 药品 药物开发 生化工程 医学 生物 工程类 核糖核酸 基因 古生物学 生物化学
作者
Kiara Fairman,Miao Li,Baitang Ning,Annie Lumen
出处
期刊:Biochemical Pharmacology [Elsevier]
卷期号:189: 114468-114468 被引量:21
标识
DOI:10.1016/j.bcp.2021.114468
摘要

Physiologically based pharmacokinetic (PBPK) modeling is a powerful tool with many demonstrated applications in various phases of drug development and regulatory review. RNA interference (RNAi)-based therapeutics are a class of drugs that have unique pharmacokinetic properties and mechanisms of action. With an increasing number of RNAi therapeutics in the pipeline and reaching the market, there is a considerable amount of active research in this area requiring a multidisciplinary approach. The application of PBPK models for RNAi therapeutics is in its infancy and its utility to facilitate the development of this new class of drugs is yet to be fully evaluated. From this perspective, we briefly discuss some of the current computational modeling approaches used in support of efficient development and approval of RNAi therapeutics. Considerations for PBPK model development are highlighted both in a relative context between small molecules and large molecules such as monoclonal antibodies and as it applies to RNAi therapeutics. In addition, the prospects for drawing upon other recognized avenues of PBPK modeling and some of the foreseeable challenges in PBPK model development for these chemical modalities are briefly discussed. Finally, an exploration of the potential application of PBPK model development for RNAi therapeutics is provided. We hope these preliminary thoughts will help initiate a dialogue between scientists in the relevant sectors to examine the value of PBPK modeling for RNAi therapeutics. Such evaluations could help standardize the practice in the future and support appropriate guidance development for strengthening the RNAi therapeutics development program.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bearbiscuit发布了新的文献求助10
1秒前
鲸鱼完成签到,获得积分10
1秒前
1秒前
2秒前
wbbb发布了新的文献求助10
3秒前
SciGPT应助Wangjingxuan采纳,获得10
3秒前
zzz发布了新的文献求助20
4秒前
5秒前
5秒前
buiubiu发布了新的文献求助30
5秒前
memory发布了新的文献求助10
6秒前
小文发布了新的文献求助10
6秒前
7秒前
小墨应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
小熊应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
惜曦完成签到 ,获得积分10
8秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
9秒前
张嘚嘚关注了科研通微信公众号
9秒前
愉快雁开发布了新的文献求助30
9秒前
wbbb完成签到,获得积分10
10秒前
10秒前
一指墨发布了新的文献求助10
11秒前
tang发布了新的文献求助10
11秒前
stupid发布了新的文献求助10
12秒前
赘婿应助寒江采纳,获得150
13秒前
遥感小虫发布了新的文献求助10
14秒前
never发布了新的文献求助20
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289835
求助须知:如何正确求助?哪些是违规求助? 2926650
关于积分的说明 8428372
捐赠科研通 2598029
什么是DOI,文献DOI怎么找? 1417522
科研通“疑难数据库(出版商)”最低求助积分说明 659765
邀请新用户注册赠送积分活动 642195