亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Paired Analyses of AML at Diagnosis and Relapse By Single-Cell RNA Sequencing Identifies Two Distinct Relapse Patterns

生物 基因 白血病 表观遗传学 基因表达谱 癌症研究 基因表达 遗传学
作者
Kai Wu,Qianyi Ma,Darren King,Jun Li,Sami N. Malek
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 183-183
标识
DOI:10.1182/blood-2019-124170
摘要

Introduction: Despite achievement of complete remission (CR) following chemotherapy, Acute Myelogenous Leukemia (AML) relapses in the majority of adult patients. While relapsed AML is almost always clonally related to the disease at diagnosis, the actual molecular and cellular contributors to chemotherapy resistance and to AML relapse remain incompletely understood. Some molecular determinants of relapse have been identified in genomic, epigenetic and proteomic aberrations, while cellular relapse reservoirs have been identified in leukemia stem cells as well as in more mature leukemic cell compartments. Here, we set out to determine the cellular composition, gene mutation status and gene expression of paired AML specimens procured at diagnosis and at relapse aiming at a better understanding of the AML relapse process. Methods: We employed the drop-seq 3' single cell RNA sequencing (scRNA-seq) method (Macosko 2015) with minor modifications to analyze the mRNA expression in single cells derived from 12 paired AML specimens procured at diagnosis and at relapse from prior CR. We obtained scRNA-seq data on 1000-2000 single cells per sample detecting approximately 2000-3000 unique molecular identifiers (UMIs) and 800-1500 genes per cell. Using WES or panel-based sequencing we determined mutations in known driver genes. Subsequently, we optimized novel methods for detection and mapping of mutated driver genes to individual cells using mutation specific PCR conditions and novel bioinformatics approaches. We annotated scRNA-seq expression profiles of the diagnosis and relapsed AML specimens individually using publicly available data for cell type-specific RNA markers derived from sorted normal cell populations and further compared the scRNA-seq data to scRNA-seq data of 5 pooled normal human bone marrows generated for this study. Results: Through analyses of scRNA-seq data of paired diagnosis and relapse AML specimens via principle components analyses (PCA) or t-distributed stochastic neighbor embedding (t-SNE) we detected varying degrees of separation of cell clusters in all cases analyzed indicative of substantial changes in single cell gene expression between AML diagnosis and relapse. A few of these observed cluster shifts were paralleled by gain or loss of mutated genes (e.g. FLT3-ITD) at relapse while most others lacked obvious clonal genomic markers. Through subsequent comparison of the expression similarities of single AML cells to sorted normal human bone marrow cells we detected two distinct AML relapse patterns: i) a pattern of relapse suggesting simple leukemia regrowth as evidenced by similar proportions of leukemia cells mapping onto discrete normal bone marrow cells (e.g. monocyte-like or GMPs or CMPs), and, ii) a pattern of relapse whereby the gene expression of relapsed cells (but not diagnosis cells) had similarity to normal hematopoietic cells that are conventionally placed more apical in the classical hematopoiesis differentiation cascade (HSCs, MPPs, CMPs; a phenotypic shift to immaturity). In addition, no leukemia sample mapped to just one classically defined bone marrow cell type but instead to multiple cell types, suggesting that most AML leukemia cells harbor aberrant hybrid cell gene expression patterns. Finally, we detected quantitative shifts in T cells and NK cells in some samples at relapse, which will be analyzed in greater detail. Conclusions: The comparative analysis of scRNA-seq data of paired AML specimens procured at diagnosis and relapse, identifies frequent and previously unrecognized changes in gene expression in leukemia cells at relapse. Through a comparison of gene mutation and gene expression at single cell resolution we identify two distinct AML relapse patterns in adult AML. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你是我的唯一完成签到 ,获得积分10
2秒前
Gsrr完成签到 ,获得积分10
3秒前
铁妞妞是土猫完成签到,获得积分20
4秒前
沉默的西牛完成签到,获得积分10
5秒前
5秒前
花生王子完成签到 ,获得积分0
6秒前
Jasper应助冰汤葫芦采纳,获得20
8秒前
10秒前
14秒前
OvO_4577完成签到,获得积分10
20秒前
21_xxrr完成签到 ,获得积分10
21秒前
清新的夜蕾完成签到 ,获得积分10
22秒前
北北完成签到,获得积分10
22秒前
23秒前
小二郎应助xiang采纳,获得10
24秒前
27秒前
冉亦完成签到,获得积分10
27秒前
卡卡东完成签到 ,获得积分10
39秒前
cao完成签到,获得积分10
39秒前
木棉完成签到,获得积分10
39秒前
hhh完成签到 ,获得积分10
41秒前
47秒前
FashionBoy应助我有一壶酒采纳,获得10
47秒前
Plikestudy发布了新的文献求助30
49秒前
科研通AI6.1应助Okanryo采纳,获得10
49秒前
51秒前
丸子完成签到 ,获得积分10
53秒前
55秒前
56秒前
57秒前
58秒前
量子星尘发布了新的文献求助10
59秒前
1分钟前
科目三应助LY采纳,获得10
1分钟前
1分钟前
xiang发布了新的文献求助10
1分钟前
yangzai完成签到 ,获得积分0
1分钟前
alva发布了新的文献求助10
1分钟前
katata完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779791
求助须知:如何正确求助?哪些是违规求助? 5649870
关于积分的说明 15452355
捐赠科研通 4910851
什么是DOI,文献DOI怎么找? 2642982
邀请新用户注册赠送积分活动 1590635
关于科研通互助平台的介绍 1545094