清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Paired Analyses of AML at Diagnosis and Relapse By Single-Cell RNA Sequencing Identifies Two Distinct Relapse Patterns

生物 基因 白血病 表观遗传学 基因表达谱 癌症研究 基因表达 遗传学
作者
Kai Wu,Qianyi Ma,Darren King,Jun Li,Sami N. Malek
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 183-183
标识
DOI:10.1182/blood-2019-124170
摘要

Introduction: Despite achievement of complete remission (CR) following chemotherapy, Acute Myelogenous Leukemia (AML) relapses in the majority of adult patients. While relapsed AML is almost always clonally related to the disease at diagnosis, the actual molecular and cellular contributors to chemotherapy resistance and to AML relapse remain incompletely understood. Some molecular determinants of relapse have been identified in genomic, epigenetic and proteomic aberrations, while cellular relapse reservoirs have been identified in leukemia stem cells as well as in more mature leukemic cell compartments. Here, we set out to determine the cellular composition, gene mutation status and gene expression of paired AML specimens procured at diagnosis and at relapse aiming at a better understanding of the AML relapse process. Methods: We employed the drop-seq 3' single cell RNA sequencing (scRNA-seq) method (Macosko 2015) with minor modifications to analyze the mRNA expression in single cells derived from 12 paired AML specimens procured at diagnosis and at relapse from prior CR. We obtained scRNA-seq data on 1000-2000 single cells per sample detecting approximately 2000-3000 unique molecular identifiers (UMIs) and 800-1500 genes per cell. Using WES or panel-based sequencing we determined mutations in known driver genes. Subsequently, we optimized novel methods for detection and mapping of mutated driver genes to individual cells using mutation specific PCR conditions and novel bioinformatics approaches. We annotated scRNA-seq expression profiles of the diagnosis and relapsed AML specimens individually using publicly available data for cell type-specific RNA markers derived from sorted normal cell populations and further compared the scRNA-seq data to scRNA-seq data of 5 pooled normal human bone marrows generated for this study. Results: Through analyses of scRNA-seq data of paired diagnosis and relapse AML specimens via principle components analyses (PCA) or t-distributed stochastic neighbor embedding (t-SNE) we detected varying degrees of separation of cell clusters in all cases analyzed indicative of substantial changes in single cell gene expression between AML diagnosis and relapse. A few of these observed cluster shifts were paralleled by gain or loss of mutated genes (e.g. FLT3-ITD) at relapse while most others lacked obvious clonal genomic markers. Through subsequent comparison of the expression similarities of single AML cells to sorted normal human bone marrow cells we detected two distinct AML relapse patterns: i) a pattern of relapse suggesting simple leukemia regrowth as evidenced by similar proportions of leukemia cells mapping onto discrete normal bone marrow cells (e.g. monocyte-like or GMPs or CMPs), and, ii) a pattern of relapse whereby the gene expression of relapsed cells (but not diagnosis cells) had similarity to normal hematopoietic cells that are conventionally placed more apical in the classical hematopoiesis differentiation cascade (HSCs, MPPs, CMPs; a phenotypic shift to immaturity). In addition, no leukemia sample mapped to just one classically defined bone marrow cell type but instead to multiple cell types, suggesting that most AML leukemia cells harbor aberrant hybrid cell gene expression patterns. Finally, we detected quantitative shifts in T cells and NK cells in some samples at relapse, which will be analyzed in greater detail. Conclusions: The comparative analysis of scRNA-seq data of paired AML specimens procured at diagnosis and relapse, identifies frequent and previously unrecognized changes in gene expression in leukemia cells at relapse. Through a comparison of gene mutation and gene expression at single cell resolution we identify two distinct AML relapse patterns in adult AML. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9527应助科研通管家采纳,获得10
14秒前
甘sir完成签到 ,获得积分10
40秒前
41秒前
miaomiao发布了新的文献求助10
45秒前
miaomiao完成签到,获得积分20
57秒前
Tong完成签到,获得积分0
1分钟前
瘪良科研完成签到,获得积分10
1分钟前
1分钟前
guo发布了新的文献求助10
1分钟前
qiaorankongling完成签到 ,获得积分10
1分钟前
共享精神应助guo采纳,获得10
2分钟前
冷静的尔竹完成签到,获得积分10
2分钟前
喜悦的唇彩完成签到,获得积分10
2分钟前
creep2020完成签到,获得积分10
2分钟前
一盏壶完成签到,获得积分10
2分钟前
JamesPei应助ivyjianjie采纳,获得10
2分钟前
彭于晏应助所谓采纳,获得10
3分钟前
lyj完成签到 ,获得积分0
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
纤指细轻捻完成签到 ,获得积分10
3分钟前
fx完成签到,获得积分10
3分钟前
火之高兴完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
Kevin完成签到,获得积分10
4分钟前
YuxinChen完成签到 ,获得积分10
4分钟前
guo发布了新的文献求助10
4分钟前
siiifang完成签到 ,获得积分10
4分钟前
所所应助guo采纳,获得10
4分钟前
英姑应助guo采纳,获得10
4分钟前
菠萝包完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
ivyjianjie发布了新的文献求助10
5分钟前
lod完成签到,获得积分10
6分钟前
minnie完成签到 ,获得积分10
6分钟前
6分钟前
guo发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603408
求助须知:如何正确求助?哪些是违规求助? 4688394
关于积分的说明 14853596
捐赠科研通 4691019
什么是DOI,文献DOI怎么找? 2540700
邀请新用户注册赠送积分活动 1507015
关于科研通互助平台的介绍 1471649