Paired Analyses of AML at Diagnosis and Relapse By Single-Cell RNA Sequencing Identifies Two Distinct Relapse Patterns

生物 基因 白血病 表观遗传学 基因表达谱 癌症研究 基因表达 遗传学
作者
Kai Wu,Qianyi Ma,Darren King,Jun Li,Sami N. Malek
出处
期刊:Blood [American Society of Hematology]
卷期号:134 (Supplement_1): 183-183
标识
DOI:10.1182/blood-2019-124170
摘要

Introduction: Despite achievement of complete remission (CR) following chemotherapy, Acute Myelogenous Leukemia (AML) relapses in the majority of adult patients. While relapsed AML is almost always clonally related to the disease at diagnosis, the actual molecular and cellular contributors to chemotherapy resistance and to AML relapse remain incompletely understood. Some molecular determinants of relapse have been identified in genomic, epigenetic and proteomic aberrations, while cellular relapse reservoirs have been identified in leukemia stem cells as well as in more mature leukemic cell compartments. Here, we set out to determine the cellular composition, gene mutation status and gene expression of paired AML specimens procured at diagnosis and at relapse aiming at a better understanding of the AML relapse process. Methods: We employed the drop-seq 3' single cell RNA sequencing (scRNA-seq) method (Macosko 2015) with minor modifications to analyze the mRNA expression in single cells derived from 12 paired AML specimens procured at diagnosis and at relapse from prior CR. We obtained scRNA-seq data on 1000-2000 single cells per sample detecting approximately 2000-3000 unique molecular identifiers (UMIs) and 800-1500 genes per cell. Using WES or panel-based sequencing we determined mutations in known driver genes. Subsequently, we optimized novel methods for detection and mapping of mutated driver genes to individual cells using mutation specific PCR conditions and novel bioinformatics approaches. We annotated scRNA-seq expression profiles of the diagnosis and relapsed AML specimens individually using publicly available data for cell type-specific RNA markers derived from sorted normal cell populations and further compared the scRNA-seq data to scRNA-seq data of 5 pooled normal human bone marrows generated for this study. Results: Through analyses of scRNA-seq data of paired diagnosis and relapse AML specimens via principle components analyses (PCA) or t-distributed stochastic neighbor embedding (t-SNE) we detected varying degrees of separation of cell clusters in all cases analyzed indicative of substantial changes in single cell gene expression between AML diagnosis and relapse. A few of these observed cluster shifts were paralleled by gain or loss of mutated genes (e.g. FLT3-ITD) at relapse while most others lacked obvious clonal genomic markers. Through subsequent comparison of the expression similarities of single AML cells to sorted normal human bone marrow cells we detected two distinct AML relapse patterns: i) a pattern of relapse suggesting simple leukemia regrowth as evidenced by similar proportions of leukemia cells mapping onto discrete normal bone marrow cells (e.g. monocyte-like or GMPs or CMPs), and, ii) a pattern of relapse whereby the gene expression of relapsed cells (but not diagnosis cells) had similarity to normal hematopoietic cells that are conventionally placed more apical in the classical hematopoiesis differentiation cascade (HSCs, MPPs, CMPs; a phenotypic shift to immaturity). In addition, no leukemia sample mapped to just one classically defined bone marrow cell type but instead to multiple cell types, suggesting that most AML leukemia cells harbor aberrant hybrid cell gene expression patterns. Finally, we detected quantitative shifts in T cells and NK cells in some samples at relapse, which will be analyzed in greater detail. Conclusions: The comparative analysis of scRNA-seq data of paired AML specimens procured at diagnosis and relapse, identifies frequent and previously unrecognized changes in gene expression in leukemia cells at relapse. Through a comparison of gene mutation and gene expression at single cell resolution we identify two distinct AML relapse patterns in adult AML. Disclosures No relevant conflicts of interest to declare.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gdh发布了新的文献求助10
刚刚
wenbo完成签到,获得积分10
1秒前
雪落你看不见完成签到,获得积分10
1秒前
wqy完成签到 ,获得积分10
2秒前
科目三应助buzhinianjiu采纳,获得10
2秒前
卖萌的秋田完成签到,获得积分10
3秒前
dream完成签到 ,获得积分10
3秒前
杰哥关注了科研通微信公众号
4秒前
寒冷丹雪完成签到,获得积分10
4秒前
6秒前
搜集达人应助woobinhua采纳,获得10
7秒前
科研通AI2S应助1953采纳,获得10
7秒前
冬猫完成签到,获得积分10
8秒前
8秒前
有魅力勒完成签到,获得积分10
9秒前
团团团完成签到 ,获得积分10
11秒前
美丽柠檬完成签到,获得积分10
12秒前
贪玩路灯完成签到,获得积分10
12秒前
e394282438完成签到,获得积分10
12秒前
蔡从安完成签到,获得积分20
13秒前
SciGPT应助快乐的小木虫采纳,获得10
13秒前
tetrakis完成签到,获得积分10
13秒前
斯文败类应助寒冷丹雪采纳,获得10
13秒前
霹雳Young完成签到 ,获得积分10
16秒前
Hyccccc完成签到,获得积分10
17秒前
17秒前
Chenly完成签到,获得积分10
17秒前
科研通AI2S应助蔡从安采纳,获得10
17秒前
lixiangrui110完成签到,获得积分10
17秒前
minmin完成签到,获得积分10
17秒前
嘟嘟完成签到,获得积分10
18秒前
11完成签到,获得积分10
18秒前
悠悠完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
快乐的小木虫完成签到,获得积分10
20秒前
han完成签到 ,获得积分10
21秒前
21秒前
皮卡噼里啪啦完成签到 ,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150658
求助须知:如何正确求助?哪些是违规求助? 2802207
关于积分的说明 7846456
捐赠科研通 2459547
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628821
版权声明 601757