RemeDB: Tool for Rapid Prediction of Enzymes Involved in Bioremediation from High-Throughput Metagenome Data Sets

基因组 生物修复 污染物 环境修复 生化工程 环境污染 污染 环境科学 生物 计算机科学 计算生物学 生态学 工程类 污染 遗传学 环境保护 基因
作者
Sai H. Sankara Subramanian,Karpaga Raja Sundari Balachandran,Vijaya Raghavan Rangamaran,Gopal Dharani
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:27 (7): 1020-1029 被引量:28
标识
DOI:10.1089/cmb.2019.0345
摘要

Environmental pollution has emerged to be a major hazard in today's world. Pollutants from varied sources cause harmful effects to the ecosystem. The major pollutants across marine and terrestrial regions are hydrocarbons, plastics, and dyes. Conventional methods for remediation have their own limitations and shortcomings to deal with these environmental pollutants. Bio-based remediation techniques using microbes have gained momentum in the recent past, primarily ascribed to their eco-friendly approach. The role of microbial enzymes in remediating the pollutants are well reported, and further exploration of microbial resources could lead to discovery of novel pollutant degrading enzymes (PDEs). Recent advances in next-generation sequencing technologies and metagenomics have provided the impetus to explore environmental microbes for potentially novel bioremediation enzymes. In this study, a tool, RemeDB, was developed for identifying bioremediation enzymes sequences from metagenomes. RemeDB aims at identifying hydrocarbon, dye, and plastic degrading enzymes from various metagenomic libraries. A sequence database consisting of >30,000 sequences proven to degrade the major pollutants was curated from various literature sources and this constituted the PDEs' database. Programs such as HMMER and RAPSearch were incorporated to scan across large metagenomic sequences libraries to identify PDEs. The tool was tested with metagenome data sets from varied sources and the outputs were validated. RemeDB was efficient to classify and identify the signature patterns of PDEs in the input data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容路人发布了新的文献求助20
1秒前
1秒前
郭小旭完成签到,获得积分10
1秒前
无花果应助沙河口大长硬采纳,获得10
2秒前
2秒前
魁梧的涵柏完成签到,获得积分20
2秒前
俏皮发卡完成签到,获得积分10
2秒前
2秒前
叶长亭发布了新的文献求助10
2秒前
zqingqing完成签到,获得积分10
2秒前
3秒前
上官若男应助楠楠采纳,获得10
3秒前
3秒前
汉堡包应助一杯CC采纳,获得10
3秒前
半截的诗完成签到,获得积分20
4秒前
4秒前
小星云发布了新的文献求助10
4秒前
5秒前
彭于晏应助逍遥小书生采纳,获得10
5秒前
HCLonely应助小萝卜123采纳,获得10
6秒前
lululala完成签到,获得积分10
6秒前
7秒前
充电宝应助悦耳薯片采纳,获得10
7秒前
8秒前
辣辣完成签到,获得积分10
9秒前
9秒前
打打应助xuhandi采纳,获得10
9秒前
10秒前
zzz发布了新的文献求助10
10秒前
缓慢靖易完成签到,获得积分10
10秒前
11秒前
敏感跳跳糖完成签到 ,获得积分10
12秒前
zz发布了新的文献求助10
12秒前
13秒前
NEVERLAND1958发布了新的文献求助10
13秒前
小萝卜123完成签到,获得积分20
14秒前
tong完成签到,获得积分10
15秒前
15秒前
15秒前
调皮以寒发布了新的文献求助10
15秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217006
求助须知:如何正确求助?哪些是违规求助? 2866175
关于积分的说明 8150709
捐赠科研通 2532816
什么是DOI,文献DOI怎么找? 1365874
科研通“疑难数据库(出版商)”最低求助积分说明 644635
邀请新用户注册赠送积分活动 617556