基因组
生物修复
污染物
环境修复
生化工程
环境污染
污染
环境科学
生物
计算机科学
计算生物学
生态学
工程类
污染
遗传学
环境保护
基因
作者
Sai H. Sankara Subramanian,Karpaga Raja Sundari Balachandran,Vijaya Raghavan Rangamaran,Gopal Dharani
标识
DOI:10.1089/cmb.2019.0345
摘要
Environmental pollution has emerged to be a major hazard in today's world. Pollutants from varied sources cause harmful effects to the ecosystem. The major pollutants across marine and terrestrial regions are hydrocarbons, plastics, and dyes. Conventional methods for remediation have their own limitations and shortcomings to deal with these environmental pollutants. Bio-based remediation techniques using microbes have gained momentum in the recent past, primarily ascribed to their eco-friendly approach. The role of microbial enzymes in remediating the pollutants are well reported, and further exploration of microbial resources could lead to discovery of novel pollutant degrading enzymes (PDEs). Recent advances in next-generation sequencing technologies and metagenomics have provided the impetus to explore environmental microbes for potentially novel bioremediation enzymes. In this study, a tool, RemeDB, was developed for identifying bioremediation enzymes sequences from metagenomes. RemeDB aims at identifying hydrocarbon, dye, and plastic degrading enzymes from various metagenomic libraries. A sequence database consisting of >30,000 sequences proven to degrade the major pollutants was curated from various literature sources and this constituted the PDEs' database. Programs such as HMMER and RAPSearch were incorporated to scan across large metagenomic sequences libraries to identify PDEs. The tool was tested with metagenome data sets from varied sources and the outputs were validated. RemeDB was efficient to classify and identify the signature patterns of PDEs in the input data sets.
科研通智能强力驱动
Strongly Powered by AbleSci AI