Hammett Relationship in Oxidase‐Mimicking Metal–Organic Frameworks Revealed through a Protein‐Engineering‐Inspired Strategy

纳米材料 材料科学 金属有机骨架 配体(生物化学) 取代基 密度泛函理论 组合化学 纳米技术 计算化学 有机化学 立体化学 生物化学 吸附 受体 化学
作者
Jiangjiexing Wu,Zhenzhen Wang,Xin Jin,Shuo Zhang,Tong Li,Yihong Zhang,Hang Xing,Yang Yu,Huigang Zhang,Xingfa Gao,Hui Wei
出处
期刊:Advanced Materials [Wiley]
卷期号:33 (3) 被引量:117
标识
DOI:10.1002/adma.202005024
摘要

Abstract While the unique physicochemical properties of nanomaterials that enable regulation of nanozyme activities are demonstrated in many systems, quantitative relationships between the nanomaterials structure and their enzymatic activities remain poorly understood, due to the heterogeneity of compositions and active sites in these nanomaterials. Here, inspired by metalloenzymes with well‐defined metal–ligand coordination, a set of substituted metal–organic frameworks (MOFs) with similar coordination is employed to investigate the relationship between structure and oxidase‐mimicking activity. Both experimental results and density functional theory calculations reveal a Hammett‐type structure–activity linear free energy relationship (H‐SALR) of MIL‐53(Fe) (MIL = Materials of Institute Lavoisier) nanozymes, in which increasing the Hammett σ m value with electron‐withdrawing ligands increases the oxidase‐mimicking activity. As a result, MIL‐53(Fe) NO 2 with the strongest electron‐withdrawing NO 2 substituent shows a tenfold higher activity than the unsubstituted MIL‐53(Fe). Furthermore, the generality of H‐SALR is demonstrated for a range of substrates, one other metal (Cr), and even one other MOF type (MIL‐101). Such biologically inspired quantitative studies demonstrate that it is possible to identify quantitative structure–activity relationships of nanozymes, and to provide detailed insight into the catalytic mechanisms as those in native enzymes, making it possible to use these relationships to develop high‐performance nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗咸蛋黄完成签到 ,获得积分20
2秒前
打打应助5477采纳,获得10
2秒前
灵巧坤发布了新的文献求助30
2秒前
2秒前
小猴完成签到,获得积分10
3秒前
Raymond应助NANA采纳,获得10
4秒前
Sean完成签到 ,获得积分10
4秒前
4秒前
无情山水发布了新的文献求助10
5秒前
锦纹完成签到,获得积分10
5秒前
南桥发布了新的文献求助10
5秒前
5秒前
伶俐的书白完成签到,获得积分10
6秒前
科研通AI5应助威武诺言采纳,获得10
6秒前
6秒前
LXL完成签到,获得积分10
6秒前
杳鸢应助三金采纳,获得20
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
英俊的铭应助yyj采纳,获得10
7秒前
SV发布了新的文献求助10
7秒前
8秒前
12发布了新的文献求助10
8秒前
JamesPei应助化学狗采纳,获得10
8秒前
胡图图发布了新的文献求助10
8秒前
9秒前
xm完成签到,获得积分10
10秒前
谦让的含海完成签到,获得积分10
10秒前
所所应助包容的剑采纳,获得10
10秒前
10秒前
11秒前
lynn_zhang发布了新的文献求助10
11秒前
12秒前
xh发布了新的文献求助10
12秒前
所所应助luoshi采纳,获得10
12秒前
飞龙在天完成签到 ,获得积分10
12秒前
深爱不疑完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762