Improving hyperspectral image segmentation by applying inverse noise weighting and outlier removal for optimal scale selection

分割 人工智能 模式识别(心理学) 加权 离群值 选择(遗传算法) 噪音(视频) 计算机科学 比例(比率) 高光谱成像 计算机视觉 图像(数学) 地理 地图学 医学 放射科
作者
Phuong D. Dao,Kiran Mantripragada,Yuhong He,Faisal Z. Qureshi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:171: 348-366 被引量:33
标识
DOI:10.1016/j.isprsjprs.2020.11.013
摘要

Optimal scale selection for image segmentation is an essential component of the Object-Based Image Analysis (OBIA) and interpretation. An optimal segmentation scale is a scale at which image objects, overall, best represent real-world ground objects and features across the entire image. At this scale, the intra-object variance is ideally lowest and the inter-object spatial autocorrelation is ideally highest, and a change in the scale could cause an abrupt change in these measures. Unsupervised parameter optimization methods typically use global measures of spatial and spectral properties calculated from all image objects in all bands as the target criteria to determine the optimal segmentation scale. However, no studies consider the effect of noise in image spectral bands on the segmentation assessment and scale selection. Furthermore, these global measures could be affected by outliers or extreme values from a small number of objects. These issues may lead to incorrect assessment and selection of optimal scales and cause the uncertainties in subsequent segmentation and classification results. These issues become more pronounced when segmenting hyperspectral data with large spectral variability across the spectrum. In this study, we propose an enhanced method that 1) incorporates the band’s inverse noise weighting in the segmentation and 2) detects and removes outliers before determining segmentation scale parameters. The proposed method is evaluated on three well-established segmentation approaches – k-means, mean-shift, and watershed. The generated segments are validated by comparing them with reference polygons using normalized over-segmentation (OS), under-segmentation (US), and the Euclidean Distance (ED) indices. The results demonstrate that this proposed scale selection method produces more accurate and reliable segmentation results. The approach can be applied to other segmentation selection criteria and are useful for automatic multi-parameter tuning and optimal scale parameter selections in OBIA methods in remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
认真摆烂完成签到,获得积分10
1秒前
英姑应助陈文娟采纳,获得10
1秒前
越啊完成签到,获得积分10
2秒前
文静的峻熙完成签到,获得积分10
2秒前
Ruby发布了新的文献求助10
2秒前
着急的小松鼠完成签到,获得积分10
2秒前
nicholasgxz完成签到,获得积分10
2秒前
充电宝应助Binbin采纳,获得10
2秒前
2秒前
3秒前
3秒前
5秒前
斯文的斩发布了新的文献求助10
6秒前
6秒前
高高高完成签到 ,获得积分10
6秒前
yar应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
qin希望应助科研通管家采纳,获得10
9秒前
xxxllllll发布了新的文献求助10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
扫地888完成签到 ,获得积分10
9秒前
DijiaXu应助科研通管家采纳,获得10
9秒前
whatever应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
whatever应助科研通管家采纳,获得10
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
Akim应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
whatever应助科研通管家采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014