Improving hyperspectral image segmentation by applying inverse noise weighting and outlier removal for optimal scale selection

尺度空间分割 分割 人工智能 基于分割的对象分类 模式识别(心理学) 加权 图像分割 离群值 计算机科学 比例(比率) 高光谱成像 计算机视觉 数学 地理 地图学 放射科 医学
作者
Phuong D. Dao,Kiran Mantripragada,Yuhong He,Faisal Z. Qureshi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:171: 348-366 被引量:30
标识
DOI:10.1016/j.isprsjprs.2020.11.013
摘要

Optimal scale selection for image segmentation is an essential component of the Object-Based Image Analysis (OBIA) and interpretation. An optimal segmentation scale is a scale at which image objects, overall, best represent real-world ground objects and features across the entire image. At this scale, the intra-object variance is ideally lowest and the inter-object spatial autocorrelation is ideally highest, and a change in the scale could cause an abrupt change in these measures. Unsupervised parameter optimization methods typically use global measures of spatial and spectral properties calculated from all image objects in all bands as the target criteria to determine the optimal segmentation scale. However, no studies consider the effect of noise in image spectral bands on the segmentation assessment and scale selection. Furthermore, these global measures could be affected by outliers or extreme values from a small number of objects. These issues may lead to incorrect assessment and selection of optimal scales and cause the uncertainties in subsequent segmentation and classification results. These issues become more pronounced when segmenting hyperspectral data with large spectral variability across the spectrum. In this study, we propose an enhanced method that 1) incorporates the band’s inverse noise weighting in the segmentation and 2) detects and removes outliers before determining segmentation scale parameters. The proposed method is evaluated on three well-established segmentation approaches – k-means, mean-shift, and watershed. The generated segments are validated by comparing them with reference polygons using normalized over-segmentation (OS), under-segmentation (US), and the Euclidean Distance (ED) indices. The results demonstrate that this proposed scale selection method produces more accurate and reliable segmentation results. The approach can be applied to other segmentation selection criteria and are useful for automatic multi-parameter tuning and optimal scale parameter selections in OBIA methods in remote sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XiHe完成签到 ,获得积分10
2秒前
852应助木通采纳,获得10
2秒前
2秒前
5秒前
5秒前
叶95发布了新的文献求助10
8秒前
xzy998应助啦啦啦采纳,获得10
9秒前
老肖应助啦啦啦采纳,获得10
9秒前
9秒前
皆非i完成签到,获得积分10
10秒前
pengyh8完成签到,获得积分10
17秒前
17秒前
18秒前
脑洞疼应助叶95采纳,获得10
18秒前
19秒前
丘比特应助斑马兽采纳,获得30
20秒前
20秒前
跳跃野狼发布了新的文献求助10
21秒前
喵喵关注了科研通微信公众号
24秒前
孝铮发布了新的文献求助10
24秒前
我是老大应助鱿鱼炒黄瓜采纳,获得200
25秒前
知更鸟发布了新的文献求助50
27秒前
28秒前
29秒前
iuhgnor发布了新的文献求助10
32秒前
33秒前
qmx完成签到,获得积分10
35秒前
35秒前
36秒前
37秒前
四氟乙烯完成签到,获得积分20
37秒前
叶95发布了新的文献求助10
38秒前
38秒前
38秒前
39秒前
害羞雨南完成签到,获得积分10
40秒前
42秒前
Frank应助孙栋采纳,获得80
42秒前
42秒前
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787779
关于积分的说明 7783154
捐赠科研通 2443843
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954