Multi-dimensional LC-MS: the next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches

表征(材料科学) 抗体 计算机科学 计算生物学 纳米技术 材料科学 生物 免疫学
作者
Julien Camperi,Alexandre Goyon,Davy Guillarme,Kelly Zhang,Cinzia Stella
出处
期刊:Analyst [Royal Society of Chemistry]
卷期号:146 (3): 747-769 被引量:64
标识
DOI:10.1039/d0an01963a
摘要

Accelerated development of new therapeutics in an increasingly competitive landscape requires the use of high throughput analytical platforms. In addition, the complexity of novel biotherapeutic formats (e.g. fusion proteins, protein-polymer conjugates, co-formulations, etc.) reinforces the need to improve the selectivity and resolution of conventional one-dimensional (1D) liquid chromatography (LC). Liquid chromatography-mass spectrometry (LC-MS)-based technologies such as native LC-MS for intact mass analysis or peptide mapping (also called bottom-up approach)-based multi-attribute methods (MAM) have already demonstrated their potential to complement the conventional analytical toolbox for monoclonal antibody (mAb) characterization. Two-dimensional liquid-chromatography (2D-LC-MS) methods have emerged in the last ten years as promising approaches to address the increasing analytical challenges faced with novel antibody formats. However, off-line sample preparation procedures are still required for conventional 1D and 2D-LC-MS methods for the in-depth variant characterization at the peptide level. Multi-dimensional LC-MS (mD-LC-MS) combine sample preparation and multi-level (i.e. intact, reduced, middle-up and peptide) analysis within the same chromatographic set-up. This review presents an overview of the benefits and limitations of mD-LC-MS approaches in comparison to conventional chromatographic methods (i.e. 1D-LC-UV methods at intact protein level and 1D-LC-MS methods at peptide level). The current analytical trends in antibody characterization by mD-LC-MS approaches, beyond the 2D-LC-MS workhorse, are also reviewed, and our vision on a more integrated multi-level mD-LC-MS characterization platform is shared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
5秒前
fjh应助MM216采纳,获得10
6秒前
6秒前
7秒前
努力的淼淼完成签到 ,获得积分10
7秒前
8秒前
852应助HHHH采纳,获得10
10秒前
liuqizong123完成签到,获得积分10
10秒前
10秒前
mmmmb发布了新的文献求助30
11秒前
12秒前
13秒前
动漫大师发布了新的文献求助10
13秒前
汉堡包应助lily采纳,获得20
13秒前
holmes完成签到,获得积分10
14秒前
15秒前
Dolphin完成签到,获得积分10
16秒前
16秒前
17秒前
holmes发布了新的文献求助10
17秒前
18秒前
18秒前
mumu发布了新的文献求助10
18秒前
18秒前
22秒前
HHHH发布了新的文献求助10
22秒前
Deerlu完成签到,获得积分10
22秒前
DDking发布了新的文献求助10
24秒前
Froglee完成签到,获得积分10
24秒前
Zilch完成签到 ,获得积分10
26秒前
guyuangyy完成签到,获得积分10
26秒前
26秒前
27秒前
斯文败类应助吴未采纳,获得10
28秒前
不吃坏橘子完成签到,获得积分10
28秒前
慕青应助不安的从霜采纳,获得10
29秒前
coffee完成签到 ,获得积分10
29秒前
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734558
求助须知:如何正确求助?哪些是违规求助? 3278480
关于积分的说明 10009777
捐赠科研通 2995112
什么是DOI,文献DOI怎么找? 1643222
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196