CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation

分割 卷积神经网络 人工智能 计算机科学 图像分割 图像(数学) 模式识别(心理学) 医学影像学 尺度空间分割 计算机视觉
作者
Ran Gu,Guotai Wang,Tao Song,Rui Huang,Michaël Aertsen,Jan Deprest,Sébastien Ourselin,Tom Vercauteren,Shaoting Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (2): 699-711 被引量:492
标识
DOI:10.1109/tmi.2020.3035253
摘要

Accurate medical image segmentation is essential for diagnosis and treatment planning of diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they are still challenged by complicated conditions where the segmentation target has large variations of position, shape and scale, and existing CNNs have a poor explainability that limits their application to clinical decisions. In this work, we make extensive use of multiple attentions in a CNN architecture and propose a comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image segmentation that is aware of the most important spatial positions, channels and scales at the same time. In particular, we first propose a joint spatial attention module to make the network focus more on the foreground region. Then, a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels. Also, we propose a scale attention module implicitly emphasizing the most salient feature maps among multiple scales so that the CNN is adaptive to the size of an object. Extensive experiments on skin lesion segmentation from ISIC 2018 and multi-class segmentation of fetal MRI found that our proposed CA-Net significantly improved the average segmentation Dice score from 87.77% to 92.08% for skin lesion, 84.79% to 87.08% for the placenta and 93.20% to 95.88% for the fetal brain respectively compared with U-Net. It reduced the model size to around 15 times smaller with close or even better accuracy compared with state-of-the-art DeepLabv3+. In addition, it has a much higher explainability than existing networks by visualizing the attention weight maps. Our code is available at https://github.com/HiLab-git/CA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mucheng发布了新的文献求助10
刚刚
刚刚
1秒前
CodeCraft应助panghu采纳,获得10
1秒前
风帆展发布了新的文献求助50
1秒前
HaHa007完成签到 ,获得积分10
1秒前
1秒前
千筹完成签到,获得积分10
3秒前
3秒前
3秒前
乐观红牛完成签到 ,获得积分10
5秒前
孤独的蚂蚁完成签到 ,获得积分10
5秒前
斯文明杰发布了新的文献求助10
6秒前
6秒前
6秒前
小向完成签到,获得积分10
6秒前
Cyber_relic发布了新的文献求助10
6秒前
7秒前
8秒前
量子星尘发布了新的文献求助30
8秒前
jenna完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
pp1230完成签到,获得积分10
9秒前
迟大猫应助2248388622采纳,获得10
10秒前
11秒前
11秒前
情怀应助贝果小脑袋采纳,获得30
12秒前
12秒前
星辉斑斓完成签到,获得积分10
12秒前
陈同学发布了新的文献求助10
13秒前
小文完成签到 ,获得积分10
13秒前
13秒前
13秒前
科研小白完成签到,获得积分10
14秒前
闾丘曼安发布了新的文献求助10
14秒前
关山发布了新的文献求助10
14秒前
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771