已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation

分割 卷积神经网络 人工智能 计算机科学 图像分割 图像(数学) 模式识别(心理学) 医学影像学 尺度空间分割 计算机视觉
作者
Ran Gu,Guotai Wang,Tao Song,Rui Huang,Michaël Aertsen,Jan Deprest,Sébastien Ourselin,Tom Vercauteren,Shaoting Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (2): 699-711 被引量:521
标识
DOI:10.1109/tmi.2020.3035253
摘要

Accurate medical image segmentation is essential for diagnosis and treatment planning of diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they are still challenged by complicated conditions where the segmentation target has large variations of position, shape and scale, and existing CNNs have a poor explainability that limits their application to clinical decisions. In this work, we make extensive use of multiple attentions in a CNN architecture and propose a comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image segmentation that is aware of the most important spatial positions, channels and scales at the same time. In particular, we first propose a joint spatial attention module to make the network focus more on the foreground region. Then, a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels. Also, we propose a scale attention module implicitly emphasizing the most salient feature maps among multiple scales so that the CNN is adaptive to the size of an object. Extensive experiments on skin lesion segmentation from ISIC 2018 and multi-class segmentation of fetal MRI found that our proposed CA-Net significantly improved the average segmentation Dice score from 87.77% to 92.08% for skin lesion, 84.79% to 87.08% for the placenta and 93.20% to 95.88% for the fetal brain respectively compared with U-Net. It reduced the model size to around 15 times smaller with close or even better accuracy compared with state-of-the-art DeepLabv3+. In addition, it has a much higher explainability than existing networks by visualizing the attention weight maps. Our code is available at https://github.com/HiLab-git/CA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
專注完美近乎苛求完成签到 ,获得积分10
1秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
Rabbit发布了新的文献求助10
2秒前
Herry-Jeremy发布了新的文献求助10
7秒前
8秒前
Ava应助义气的跳跳糖采纳,获得10
8秒前
深巷南离木完成签到,获得积分10
9秒前
柚又完成签到,获得积分10
10秒前
Mike发布了新的文献求助10
13秒前
13秒前
Herry-Jeremy完成签到,获得积分10
14秒前
十三完成签到,获得积分10
16秒前
19秒前
Xieyusen发布了新的文献求助10
19秒前
Eins完成签到 ,获得积分10
23秒前
23秒前
望北完成签到 ,获得积分10
23秒前
田一完成签到 ,获得积分10
25秒前
小满完成签到,获得积分10
33秒前
39秒前
寒冷毛衣发布了新的文献求助10
42秒前
Lu完成签到 ,获得积分10
48秒前
不安太阳完成签到,获得积分10
52秒前
57秒前
后会无期完成签到,获得积分10
58秒前
Colossus完成签到,获得积分10
1分钟前
山猫大王完成签到 ,获得积分10
1分钟前
jackie发布了新的文献求助10
1分钟前
顾矜应助jackie采纳,获得10
1分钟前
仔wang完成签到,获得积分10
1分钟前
1分钟前
jackie完成签到,获得积分20
1分钟前
闵凝竹完成签到 ,获得积分0
1分钟前
威武鸵鸟完成签到,获得积分10
1分钟前
Yuhaoo发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963143
求助须知:如何正确求助?哪些是违规求助? 3509015
关于积分的说明 11144838
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621