CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation

分割 卷积神经网络 人工智能 计算机科学 图像分割 图像(数学) 模式识别(心理学) 医学影像学 尺度空间分割 计算机视觉
作者
Ran Gu,Guotai Wang,Tao Song,Rui Huang,Michaël Aertsen,Jan Deprest,Sébastien Ourselin,Tom Vercauteren,Shaoting Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (2): 699-711 被引量:567
标识
DOI:10.1109/tmi.2020.3035253
摘要

Accurate medical image segmentation is essential for diagnosis and treatment planning of diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they are still challenged by complicated conditions where the segmentation target has large variations of position, shape and scale, and existing CNNs have a poor explainability that limits their application to clinical decisions. In this work, we make extensive use of multiple attentions in a CNN architecture and propose a comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image segmentation that is aware of the most important spatial positions, channels and scales at the same time. In particular, we first propose a joint spatial attention module to make the network focus more on the foreground region. Then, a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels. Also, we propose a scale attention module implicitly emphasizing the most salient feature maps among multiple scales so that the CNN is adaptive to the size of an object. Extensive experiments on skin lesion segmentation from ISIC 2018 and multi-class segmentation of fetal MRI found that our proposed CA-Net significantly improved the average segmentation Dice score from 87.77% to 92.08% for skin lesion, 84.79% to 87.08% for the placenta and 93.20% to 95.88% for the fetal brain respectively compared with U-Net. It reduced the model size to around 15 times smaller with close or even better accuracy compared with state-of-the-art DeepLabv3+. In addition, it has a much higher explainability than existing networks by visualizing the attention weight maps. Our code is available at https://github.com/HiLab-git/CA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a1313发布了新的文献求助10
刚刚
LY发布了新的文献求助10
1秒前
隐形曼青应助wuxunxun2015采纳,获得10
2秒前
2秒前
2秒前
qqq完成签到,获得积分10
4秒前
小蘑菇应助小不点采纳,获得30
4秒前
4秒前
竹蜻蜓发布了新的文献求助10
6秒前
6秒前
able1325完成签到 ,获得积分10
6秒前
6秒前
顾矜应助LY采纳,获得10
7秒前
JamesPei应助Li采纳,获得10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
dc发布了新的文献求助10
9秒前
dfggg发布了新的文献求助30
9秒前
泡泡泡芙发布了新的文献求助30
11秒前
小张发布了新的文献求助10
14秒前
小贾发布了新的文献求助10
14秒前
Lucas应助威武的皮卡丘采纳,获得10
15秒前
16秒前
17秒前
科研通AI2S应助tangrzh采纳,获得10
18秒前
18秒前
li完成签到 ,获得积分10
19秒前
20秒前
20秒前
21秒前
21秒前
22秒前
YIZHIZOU发布了新的文献求助10
23秒前
24秒前
25秒前
朴实的纸飞机完成签到,获得积分10
25秒前
科研发布了新的文献求助10
25秒前
李健的小迷弟应助CCC采纳,获得10
25秒前
我爱吃肉发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598857
求助须知:如何正确求助?哪些是违规求助? 4684254
关于积分的说明 14834399
捐赠科研通 4665126
什么是DOI,文献DOI怎么找? 2537490
邀请新用户注册赠送积分活动 1504943
关于科研通互助平台的介绍 1470655