Verification of deterministic solar forecasts

预测验证 预测技巧 均方误差 计算机科学 可靠性(半导体) 度量(数据仓库) 一致性预测 领域(数学) 太阳能 质量(理念) 数据挖掘 统计 数学 物理 纯数学 功率(物理) 哲学 认识论 生物 量子力学 生态学
作者
Dazhi Yang,Stefano Alessandrini,J. Antonanzas,F. Antoñanzas-Torres,Viorel Bădescu,Hans Georg Beyer,Robert Blaga,John Boland,Jamie M. Bright,Carlos F.M. Coimbra,Mathieu David,Âzeddine Frimane,Christian A. Gueymard,Rubén Urraca,Merlinde Kay,Jamie M. Bright,Jan Kleissl,Philippe Lauret,Elke Lorenz,Dennis van der Meer,Marius Paulescu,Richard Perez,Óscar Perpiñán,Ian Marius Peters,Gordon Reikard,D. Renné,Yves-Marie Saint-Drenan,Yong Shuai,Rubén Urraca,Hadrien Verbois,Frank Vignola,Cyril Voyant,Jie Zhang
出处
期刊:Solar Energy [Elsevier]
卷期号:210: 20-37 被引量:169
标识
DOI:10.1016/j.solener.2020.04.019
摘要

The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy–Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows—with appropriate caveats—comparison of forecasts made using different models, across different locations and time periods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助songyuuuuu采纳,获得10
刚刚
今后应助清水胖子采纳,获得10
2秒前
闪闪的阑香关注了科研通微信公众号
3秒前
3秒前
逍遥自在发布了新的文献求助10
3秒前
3秒前
Cuddly完成签到 ,获得积分10
3秒前
安可瓶子发布了新的文献求助10
4秒前
不安毛豆应助小尚要加油采纳,获得10
4秒前
shine完成签到 ,获得积分10
5秒前
科研通AI2S应助zz采纳,获得30
6秒前
蜗壳发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
阿诺德发布了新的文献求助10
9秒前
天天快乐应助易槐采纳,获得10
9秒前
9秒前
莫楠完成签到,获得积分10
9秒前
10秒前
我爱科研发布了新的文献求助20
10秒前
论英雄发布了新的文献求助10
11秒前
善学以致用应助发条采纳,获得10
12秒前
淋巴细胞关注了科研通微信公众号
12秒前
包笑白发布了新的文献求助10
13秒前
善学以致用应助宋虹采纳,获得10
13秒前
老实铁身完成签到 ,获得积分10
13秒前
14秒前
伍洁完成签到 ,获得积分10
15秒前
vhdadw完成签到,获得积分10
15秒前
15秒前
orixero应助Jolene66采纳,获得10
16秒前
我是老大应助naturehome采纳,获得10
17秒前
欢喜自中关注了科研通微信公众号
17秒前
17秒前
18秒前
zhizhaomai发布了新的文献求助30
18秒前
18秒前
Sonny发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145597
求助须知:如何正确求助?哪些是违规求助? 2797033
关于积分的说明 7822546
捐赠科研通 2453369
什么是DOI,文献DOI怎么找? 1305607
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464