Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study

医学 胶囊内镜 卷积神经网络 人工智能 核医学 模式识别(心理学) 内科学 计算机科学
作者
Tomonori Aoki,Atsuo Yamada,Yusuke Kato,Hiroaki Saito,Akiyoshi Tsuboi,Ayako Nakada,Ryota Niikura,Mitsuhiro Fujishiro,Shiro Oka,Soichiro Ishihara,Tomoki Matsuda,Masato Nakahori,Shinji Tanaka,Kazuhiko Koike,Tomohiro Tada
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:93 (1): 165-173.e1 被引量:48
标识
DOI:10.1016/j.gie.2020.04.080
摘要

Background and Aims

A deep convolutional neural network (CNN) system could be a high-level screening tool for capsule endoscopy (CE) reading but has not been established for targeting various abnormalities. We aimed to develop a CNN-based system and compare it with the existing QuickView mode in terms of their ability to detect various abnormalities.

Methods

We trained a CNN system using 66,028 CE images (44,684 images of abnormalities and 21,344 normal images). The detection rate of the CNN for various abnormalities was assessed per patient, using an independent test set of 379 consecutive small-bowel CE videos from 3 institutions. Mucosal breaks, angioectasia, protruding lesions, and blood content were present in 94, 29, 81, and 23 patients, respectively. The detection capability of the CNN was compared with that of QuickView mode.

Results

The CNN picked up 1,135,104 images (22.5%) from the 5,050,226 test images, and thus, the sampling rate of QuickView mode was set to 23% in this study. In total, the detection rate of the CNN for abnormalities per patient was significantly higher than that of QuickView mode (99% vs 89%, P < .001). The detection rates of the CNN for mucosal breaks, angioectasia, protruding lesions, and blood content were 100% (94 of 94), 97% (28 of 29), 99% (80 of 81), and 100% (23 of 23), respectively, and those of QuickView mode were 91%, 97%, 80%, and 96%, respectively.

Conclusions

We developed and tested a CNN-based detection system for various abnormalities using multicenter CE videos. This system could serve as an alternative high-level screening tool to QuickView mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cxl发布了新的文献求助10
1秒前
2秒前
mnwkwcj完成签到,获得积分10
2秒前
完美的海秋发布了新的文献求助150
2秒前
LP发布了新的文献求助10
2秒前
maox1aoxin应助猫一盒采纳,获得30
3秒前
L-g-b完成签到 ,获得积分10
3秒前
4秒前
4秒前
大头完成签到 ,获得积分10
5秒前
认真水蓝发布了新的文献求助10
5秒前
隐形曼青应助卞绍奇采纳,获得10
5秒前
可靠幼旋完成签到,获得积分10
6秒前
7秒前
8秒前
完美的海秋发布了新的文献求助150
8秒前
8秒前
9秒前
lesfilles完成签到,获得积分10
9秒前
10秒前
端庄大船完成签到,获得积分10
10秒前
小西瓜完成签到,获得积分10
11秒前
林子发布了新的文献求助10
11秒前
11秒前
11秒前
lesfilles发布了新的文献求助10
12秒前
12秒前
脑洞疼应助七喜采纳,获得10
14秒前
14秒前
14秒前
所所应助chk_perslearner采纳,获得30
15秒前
打水不打饭完成签到 ,获得积分10
15秒前
15秒前
man应助顺利琦采纳,获得10
15秒前
uniphoton发布了新的文献求助10
15秒前
cctv18应助飞翔的桃仔采纳,获得10
16秒前
科研废材完成签到,获得积分10
16秒前
大力浩轩完成签到,获得积分10
16秒前
长安某发布了新的文献求助10
16秒前
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244375
求助须知:如何正确求助?哪些是违规求助? 2888048
关于积分的说明 8251163
捐赠科研通 2556525
什么是DOI,文献DOI怎么找? 1384950
科研通“疑难数据库(出版商)”最低求助积分说明 649943
邀请新用户注册赠送积分活动 626045