Bayesian Filtering Multi-Baseline Phase Unwrapping Method Based on a Two-Stage Programming Approach

人工智能 贝叶斯概率 模式识别(心理学) 基线(sea)
作者
Yandong Gao,Xinming Tang,Tao Li,Qianfu Chen,Xiang Zhang,Shijin Li,Jing Lu
出处
期刊:Applied Sciences 卷期号:10 (9): 3139- 被引量:3
标识
DOI:10.3390/app10093139
摘要

Phase unwrapping (PU) has been a key step in the processing of interferometric synthetic aperture radar (InSAR) data, and its processing accuracy will directly affect the reconstruction results of digital elevation models (DEMs). The traditional single-baseline (SB) PU must be calculated under continuity assumptions. However, multi-baseline (MB) PU can get rid of the limitation of continuity assumption, so reasonable results can be obtained in regions with large gradient changes. However, the poor noise robustness of MBPU has always been a key problem. To address this issue, we transplant three Bayesian filtering methods with a two-stage programming approach (TSPA), and propose corresponding MBPU models. First, we propose a gradient-estimation method based on the first step of TSPA, and then the corresponding PU model is determined according to different Bayesian filtering. Finally, the wrapped phase can be obtained by unwrapping, one by one, using an effective quality map based on heapsort. These methods can improve the robustness of the MBPU methods. More significantly, this paper establishes a novel TSPA-based Bayesian filtering MBPU framework for the first time. This is of great significance for broadening the research of MBPU. The proposed methods experiments on simulated and real MB InSAR datasets. From the results, we can see that the TSPA-based Bayesian filtering MBPU framework can significantly improve the robustness of the MBPU method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
撒大苏打完成签到,获得积分10
刚刚
WWWW完成签到,获得积分10
1秒前
不想学习鸭完成签到 ,获得积分20
1秒前
yufanhui应助evefei采纳,获得10
2秒前
maox1aoxin应助evefei采纳,获得30
2秒前
najibveto应助完全X从采纳,获得10
2秒前
Dmooou完成签到 ,获得积分10
4秒前
4秒前
congxun完成签到,获得积分10
4秒前
不配.应助清爽代双采纳,获得10
5秒前
大气早晨发布了新的文献求助10
5秒前
5秒前
研友_LpKyl8发布了新的文献求助10
5秒前
搜集达人应助yi采纳,获得10
6秒前
7秒前
十六发布了新的文献求助10
8秒前
9秒前
乐乐发布了新的文献求助10
10秒前
sx完成签到,获得积分10
10秒前
乐乐应助大气早晨采纳,获得10
11秒前
11秒前
hao发布了新的文献求助10
11秒前
得了道的小神仙完成签到 ,获得积分10
11秒前
12秒前
zxy发布了新的文献求助10
12秒前
有有有由于关注了科研通微信公众号
13秒前
13秒前
李斌完成签到,获得积分10
14秒前
15秒前
15秒前
科研通AI2S应助linshunan采纳,获得10
15秒前
瓷穹发布了新的文献求助10
15秒前
16秒前
16秒前
夕荀发布了新的文献求助10
16秒前
SciGPT应助可靠的千愁采纳,获得10
16秒前
优美尔珍完成签到 ,获得积分10
16秒前
17秒前
Eliauk完成签到,获得积分10
18秒前
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919