Applications of Machine Learning to In Silico Quantification of Chemicals without Analytical Standards

生物信息学 化学 机器学习 生化工程 人工智能 计算机科学 工程类 生物化学 基因
作者
Dimitri Abrahamsson,June-Soo Park,Randolph R. Singh,Marina Sirota,Tracey J. Woodruff
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:60 (6): 2718-2727 被引量:40
标识
DOI:10.1021/acs.jcim.9b01096
摘要

Non-targeted analysis provides a comprehensive approach to analyze environmental and biological samples for nearly all chemicals present. One of the main shortcomings of current analytical methods and workflows is that they are unable to provide any quantitative information constituting an important obstacle in understanding environmental fate and human exposure. Herein, we present an in silico quantification method using mahine-learning for chemicals analyzed using electrospray ionization (ESI). We considered three data sets from different instrumental setups: (i) capillary electrophoresis electrospray ionization-mass spectrometry (CE-MS) in positive ionization mode (ESI+), (ii) liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in ESI+ and (iii) LC-QTOF/MS in negative ionization mode (ESI−). We developed and applied two different machine-learning algorithms: a random forest (RF) and an artificial neural network (ANN) to predict the relative response factors (RRFs) of different chemicals based on their physicochemical properties. Chemical concentrations can then be calculated by dividing the measured abundance of a chemical, as peak area or peak height, by its corresponding RRF. We evaluated our models and tested their predictive power using 5-fold cross-validation (CV) and y randomization. Both the RF and the ANN models showed great promise in predicting RRFs. However, the accuracy of the predictions was dependent on the data set composition and the experimental setup. For the CE-MS ESI+ data set, the best model predicted measured RRFs with a mean absolute error (MAE) of 0.19 log units and a cross-validation coefficient of determination (Q2) of 0.84 for the testing set. For the LC-QTOF/MS ESI+ data set, the best model predicted measured RRFs with an MAE of 0.32 and a Q2 of 0.40. For the LC-QTOF/MS ESI– data set, the best model predicted measured RRFs with a MAE of 0.50 and a Q2 of 0.20. Our findings suggest that machine-learning algorithms can be used for predicting concentrations of nontargeted chemicals with reasonable uncertainties, especially in ESI+, while the application on ESI– remains a more challenging problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黄完成签到,获得积分10
刚刚
doctorbba完成签到,获得积分10
1秒前
xiying发布了新的文献求助10
1秒前
2秒前
3秒前
请叫我风吹麦浪应助盛夏采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
doctorbba发布了新的文献求助30
4秒前
云朵完成签到,获得积分10
4秒前
5秒前
偲偲偲偲偲完成签到,获得积分10
5秒前
Singularity应助阿巴阿巴采纳,获得10
5秒前
甜甜的冷霜完成签到,获得积分10
5秒前
ding应助zxy采纳,获得10
7秒前
7秒前
9秒前
Justin发布了新的文献求助10
9秒前
yu完成签到,获得积分10
9秒前
9秒前
9秒前
阿宅完成签到,获得积分10
10秒前
玲哥儿完成签到,获得积分10
10秒前
11秒前
11秒前
犹豫寒云完成签到,获得积分10
11秒前
12秒前
超级白昼发布了新的文献求助10
12秒前
科研通AI5应助wxh采纳,获得10
13秒前
Abi发布了新的文献求助10
14秒前
西柚芝士茉莉完成签到,获得积分10
14秒前
Bin_Lau关注了科研通微信公众号
14秒前
14秒前
14秒前
15秒前
16秒前
乔治完成签到 ,获得积分10
16秒前
Air发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197