清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning-based prediction of phases in high-entropy alloys

人工智能 支持向量机 随机森林 特征选择 机器学习 线性判别分析 朴素贝叶斯分类器 模式识别(心理学) 计算机科学 人工神经网络
作者
Ronald Machaka
出处
期刊:Computational Materials Science [Elsevier]
卷期号:188: 110244-110244 被引量:102
标识
DOI:10.1016/j.commatsci.2020.110244
摘要

“The answer to the question “why HEAs exhibit such exceptional properties” lies in their phases” [1]. The implementation of machine learning (ML) approaches for the classification of solid solution high-entropy alloy (HEA) phases is, therefore, a topical theme in material informatics. For this study, we construct a new dataset based at least 430 peer-reviewed experimental publications including at least 40 metallurgy-specific predictor features. This study proposes a systematic framework incorporating of (a) six feature selection schemes, (b) construction of feature ensembles, and (c) the implementation of eight general ML classifiers. The classifiers, namely: regression tree (DT), linear discriminant analysis (LDA), naїve Bayes (NB), generalized linear regression (GLMNET), random forest (RF), artificial neural networks (NNET), k-nearest neighbors (kNN), and support vector machines (SVM) were trained and evaluated on classifying HEA solid solution phases across feature ensemble sizes. Feature selection results identify the most discriminating predictor features and against intuition, the post-treatment heat-treatment features performed poorly. The RF, SVM, kNN, and NNET classifiers outperformed the other algorithms used with accuracy rates of 97.5%, 95.8%, 94.5%, and 94.0%, respectively. Furthermore, five alloy systems were used to test the validity and applicability of the model - stabilization phases, production of phase transitions, and the triangulation of experimental and ab initio study findings were demonstrated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氢锂钠钾铷铯钫完成签到,获得积分10
4秒前
Square完成签到,获得积分10
8秒前
freyaaaaa应助科研通管家采纳,获得30
14秒前
科研通AI2S应助ceeray23采纳,获得20
16秒前
Xixi完成签到 ,获得积分10
37秒前
43秒前
雪山飞龙发布了新的文献求助10
53秒前
大医仁心完成签到 ,获得积分10
58秒前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
ceeray23发布了新的文献求助20
1分钟前
李健的小迷弟应助ceeray23采纳,获得20
1分钟前
1分钟前
希望天下0贩的0应助liwen采纳,获得10
1分钟前
1分钟前
klpkyx发布了新的文献求助10
1分钟前
klpkyx完成签到,获得积分10
2分钟前
2分钟前
liwen发布了新的文献求助10
2分钟前
DoctorTa发布了新的文献求助30
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
DoctorTa完成签到,获得积分10
2分钟前
juan完成签到 ,获得积分0
2分钟前
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得20
4分钟前
老迟到的友桃完成签到 ,获得积分10
4分钟前
开心惜梦完成签到,获得积分10
4分钟前
4分钟前
淡然觅荷完成签到 ,获得积分10
5分钟前
虚幻的岩完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
直率的笑翠完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
gexzygg应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554977
求助须知:如何正确求助?哪些是违规求助? 4639572
关于积分的说明 14656373
捐赠科研通 4581518
什么是DOI,文献DOI怎么找? 2512837
邀请新用户注册赠送积分活动 1487527
关于科研通互助平台的介绍 1458503