Machine learning-based prediction of phases in high-entropy alloys

人工智能 支持向量机 随机森林 特征选择 机器学习 线性判别分析 朴素贝叶斯分类器 模式识别(心理学) 计算机科学 人工神经网络
作者
Ronald Machaka
出处
期刊:Computational Materials Science [Elsevier]
卷期号:188: 110244-110244 被引量:89
标识
DOI:10.1016/j.commatsci.2020.110244
摘要

“The answer to the question “why HEAs exhibit such exceptional properties” lies in their phases” [1]. The implementation of machine learning (ML) approaches for the classification of solid solution high-entropy alloy (HEA) phases is, therefore, a topical theme in material informatics. For this study, we construct a new dataset based at least 430 peer-reviewed experimental publications including at least 40 metallurgy-specific predictor features. This study proposes a systematic framework incorporating of (a) six feature selection schemes, (b) construction of feature ensembles, and (c) the implementation of eight general ML classifiers. The classifiers, namely: regression tree (DT), linear discriminant analysis (LDA), naїve Bayes (NB), generalized linear regression (GLMNET), random forest (RF), artificial neural networks (NNET), k-nearest neighbors (kNN), and support vector machines (SVM) were trained and evaluated on classifying HEA solid solution phases across feature ensemble sizes. Feature selection results identify the most discriminating predictor features and against intuition, the post-treatment heat-treatment features performed poorly. The RF, SVM, kNN, and NNET classifiers outperformed the other algorithms used with accuracy rates of 97.5%, 95.8%, 94.5%, and 94.0%, respectively. Furthermore, five alloy systems were used to test the validity and applicability of the model - stabilization phases, production of phase transitions, and the triangulation of experimental and ab initio study findings were demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋山伊夫完成签到,获得积分10
刚刚
入门的橙橙完成签到 ,获得积分10
刚刚
BONBON发布了新的文献求助10
1秒前
3秒前
TOM完成签到,获得积分10
3秒前
隐形曼青应助欣喜访旋采纳,获得10
4秒前
852应助Millie采纳,获得10
4秒前
龍Ryu完成签到,获得积分10
5秒前
内向凌兰发布了新的文献求助10
6秒前
伍秋望完成签到,获得积分10
6秒前
7秒前
8秒前
跳跃发布了新的文献求助10
9秒前
持卿应助宗磬采纳,获得20
9秒前
9秒前
花生油炒花生米完成签到 ,获得积分10
9秒前
Riki完成签到,获得积分10
11秒前
虚幻白玉发布了新的文献求助10
11秒前
德行天下完成签到,获得积分10
11秒前
Jenny应助lan采纳,获得10
12秒前
fztnh完成签到,获得积分10
12秒前
上官若男应助lyz666采纳,获得10
12秒前
顾念完成签到 ,获得积分10
12秒前
277发布了新的文献求助10
13秒前
小二郎应助GCD采纳,获得10
14秒前
hhhhhh完成签到 ,获得积分10
14秒前
甜味拾荒者完成签到,获得积分10
16秒前
小二郎应助BONBON采纳,获得10
16秒前
17秒前
charllie完成签到 ,获得积分10
17秒前
空禅yew完成签到,获得积分10
18秒前
坚强亦丝应助跳跃采纳,获得10
20秒前
英俊的铭应助cc采纳,获得10
20秒前
huangsan完成签到,获得积分10
20秒前
匹诺曹完成签到,获得积分10
20秒前
21秒前
华仔应助进取拼搏采纳,获得10
21秒前
22秒前
dingdong发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808