Piezoelectric properties of triply periodic minimum surface structures

材料科学 陶瓷 压电 复合材料 电压 冯·米塞斯屈服准则 体积分数 剪应力 有限元法 结构工程 电气工程 工程类
作者
Huibin Xu,Yi Min Xie,Ricky Chan,Shiwei Zhou
出处
期刊:Composites Science and Technology [Elsevier]
卷期号:200: 108417-108417 被引量:17
标识
DOI:10.1016/j.compscitech.2020.108417
摘要

Piezoelectric ceramic-polymer composites have attracted substantial interest owing to their distinct piezoelectric performance. This paper investigates the dependence of their output voltage on the volume fraction and structure of the ceramic component, together with the type of stimulus, using finite element analysis. When ceramic parts of piezocomposites are shaped into structures with a topology of triply periodic minimum surface such as Schwarz Primitive surface, Gyroid surface, and Neovius surface, they exhibit much better piezoelectric performance than existing piezocomposites under both the compressive strain and the shear strain. Compared to a piezocomposite with three intersecting ceramic cuboids, Schwarz piezocomposite with the same volume fraction of 50% can increase output voltage by approximately 50% under compressive strains 2%–8%. With 16% ceramic material and under a compressive strain of 8%, Neovius piezocomposite demonstrates ~17-fold and ~6,000-fold enhancement of output voltage than that of the piezocomposite in the 3-3 mode (connected and irregularly-shaped ceramic component) and in the 0–3 mode (disconnected ceramic particles), respectively. Under simple shear, performance superiority of Neovius piezocomposite to that of the 3-3 mode piezocomposite becomes more significant as output voltage can be enhanced up to approximately 30-fold. Computational analysis shows that high von Mises stress helps to enlarge the difference between positive and negative electrical potential, and therefore enhance output voltage. The findings in this work also reveal output voltage is inversely proportional to strain energy stored in piezocomposites. Because Schwarz piezocomposite has the largest bulk modulus with minimum strain energy under compression, it has the maximum output voltage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助sw98318采纳,获得10
刚刚
wangyanwxy发布了新的文献求助10
1秒前
1秒前
搜集达人应助WTF采纳,获得10
2秒前
Ava应助陆靖易采纳,获得10
2秒前
daishuheng完成签到 ,获得积分10
3秒前
OJL完成签到 ,获得积分10
4秒前
郑思榆完成签到 ,获得积分10
4秒前
wan完成签到 ,获得积分10
5秒前
cheney完成签到,获得积分10
6秒前
周周好运完成签到,获得积分10
6秒前
温言发布了新的文献求助20
8秒前
Rahul完成签到,获得积分10
8秒前
默默的豆芽完成签到,获得积分10
8秒前
wangyanwxy完成签到,获得积分10
9秒前
flymove完成签到,获得积分10
9秒前
科研通AI5应助平淡南霜采纳,获得10
11秒前
wanci应助小小爱吃百香果采纳,获得10
11秒前
12秒前
12秒前
12秒前
14秒前
我是站长才怪应助xg采纳,获得10
14秒前
decimalpoint完成签到 ,获得积分10
16秒前
Benliu发布了新的文献求助20
16秒前
16秒前
Carol完成签到,获得积分10
16秒前
sw98318发布了新的文献求助10
17秒前
wang1090完成签到,获得积分10
17秒前
奋斗的许婷2完成签到,获得积分10
17秒前
17秒前
18秒前
hll完成签到,获得积分20
18秒前
阳yang发布了新的文献求助10
18秒前
19秒前
wang1090发布了新的文献求助30
20秒前
呜呜呜呜完成签到,获得积分10
20秒前
20秒前
Riki发布了新的文献求助10
21秒前
88发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808